Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 20(10): 1479-1482, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37749213

ABSTRACT

Probing non-equilibrium dynamics with single-molecule spectroscopy is important for dissecting biomolecular mechanisms. However, existing microfluidic rapid-mixing systems for this purpose are incompatible with surface-adhesive biomolecules, exhibit undesirable flow dispersion and are often demanding to fabricate. Here we introduce droplet-based microfluidic mixing for single-molecule spectroscopy to overcome these limitations in a wide range of applications. We demonstrate its robust functionality with binding kinetics of even very surface-adhesive proteins on the millisecond timescale.

2.
J Chem Phys ; 157(23): 235102, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36550025

ABSTRACT

Intrinsically disordered proteins (IDPs) play key roles in cellular regulation, including signal transduction, transcription, and cell-cycle control. Accordingly, IDPs can commonly interact with numerous different target proteins, and their interaction networks are expected to be highly regulated. However, many of the underlying regulatory mechanisms have remained unclear. Here, we examine the representative case of the nuclear coactivator binding domain (NCBD) of the large multidomain protein CBP, a hub in transcriptional regulation, and the interaction with several of its binding partners. Single-molecule Förster resonance energy transfer measurements show that phosphorylation of NCBD reduces its binding affinity, with effects that vary depending on the binding partner and the site and number of modifications. The complexity of the interaction is further increased by the dependence of the affinities on peptidyl-prolyl cis/trans isomerization in NCBD. Overall, our results reveal the potential for allosteric regulation on at least three levels: the different affinities of NCBD for its different binding partners, the differential modulation of these affinities by phosphorylation, and the effect of peptidyl-prolyl cis/trans isomerization on binding.


Subject(s)
Protein Folding , Proteins , Phosphorylation , Isomerism , Proteins/metabolism , Protein Binding , Peptidylprolyl Isomerase/chemistry , Peptidylprolyl Isomerase/metabolism
3.
Proc Natl Acad Sci U S A ; 117(24): 13480-13489, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32487732

ABSTRACT

Intrinsically disordered proteins (IDPs) abound in cellular regulation. Their interactions are often transitory and highly sensitive to salt concentration and posttranslational modifications. However, little is known about the effect of macromolecular crowding on the interactions of IDPs with their cellular targets. Here, we investigate the influence of crowding on the interaction between two IDPs that fold upon binding, with polyethylene glycol as a crowding agent. Single-molecule spectroscopy allows us to quantify the effects of crowding on a comprehensive set of observables simultaneously: the equilibrium stability of the complex, the association and dissociation kinetics, and the microviscosity, which governs translational diffusion. We show that a quantitative and coherent explanation of all observables is possible within the framework of depletion interactions if the polymeric nature of IDPs and crowders is incorporated based on recent theoretical developments. The resulting integrated framework can also rationalize important functional consequences, for example, that the interaction between the two IDPs is less enhanced by crowding than expected for folded proteins of the same size.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Kinetics , Macromolecular Substances/chemistry , Models, Chemical , Polyethylene Glycols/chemistry , Polyethylene Glycols/metabolism , Protein Binding , Protein Folding , Protein Stability , Single Molecule Imaging , Viscosity
4.
Nat Commun ; 9(1): 4708, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30413694

ABSTRACT

The association of biomolecules is the elementary event of communication in biology. Most mechanistic information of how the interactions between binding partners form or break is, however, hidden in the transition paths, the very short parts of the molecular trajectories from the encounter of the two molecules to the formation of a stable complex. Here we use single-molecule spectroscopy to measure the transition path times for the association of two intrinsically disordered proteins that form a folded dimer upon binding. The results reveal the formation of a metastable encounter complex that is electrostatically favored and transits to the final bound state within tens of microseconds. Such measurements thus open a new window into the microscopic events governing biomolecular interactions.


Subject(s)
Protein Folding , Proteins/chemistry , Proteins/metabolism , Amino Acid Sequence , Fluorescence Resonance Energy Transfer , Friction , Osmolar Concentration , Time Factors
5.
Biophys J ; 115(6): 996-1006, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30173887

ABSTRACT

Interactions between emerging nascent polypeptide chains and the ribosome can modulate cotranslational protein folding. However, it has remained unclear how such interactions can affect the binding of nascent chains to their cellular targets. We thus investigated on the ribosome the interaction between two intrinsically disordered proteins of opposite charge, ACTR and NCBD, which form a high-affinity complex in a coupled folding-and-binding reaction. Using fluorescence correlation spectroscopy and arrest-peptide-mediated force measurements in vitro and in vivo, we find that the ACTR-NCBD complex can form cotranslationally but only with ACTR as the nascent chain and NCBD free in solution, not vice versa. We show that this surprising asymmetry in behavior is caused by pronounced charge interactions: attraction of the positively charged nascent chain of NCBD to the negatively charged ribosomal surface competes with complex formation and prevents ACTR binding. In contrast, the negatively charged nascent ACTR is repelled by the ribosomal surface and thus remains available for productively binding its partner. Electrostatic interactions may thus be more important for cotranslational folding and binding than previously thought.


Subject(s)
Nuclear Receptor Coactivator 3/chemistry , Nuclear Receptor Coactivator 3/metabolism , Protein Folding , Ribosomes/metabolism , Models, Molecular , Protein Domains
6.
Science ; 361(6405)2018 08 31.
Article in English | MEDLINE | ID: mdl-30166459

ABSTRACT

Riback et al (Reports, 13 October 2017, p. 238) used small-angle x-ray scattering (SAXS) experiments to infer a degree of compaction for unfolded proteins in water versus chemical denaturant that is highly consistent with the results from Förster resonance energy transfer (FRET) experiments. There is thus no "contradiction" between the two methods, nor evidence to support their claim that commonly used FRET fluorophores cause protein compaction.


Subject(s)
Protein Conformation , Scattering, Small Angle , Fluorescence Resonance Energy Transfer , Protein Denaturation , Water , X-Ray Diffraction
7.
Nature ; 555(7694): 61-66, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29466338

ABSTRACT

Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes.


Subject(s)
Histones/chemistry , Histones/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Protein Precursors/chemistry , Protein Precursors/metabolism , Thymosin/analogs & derivatives , Binding Sites , Humans , Protein Binding , Static Electricity , Thymosin/chemistry , Thymosin/metabolism
8.
J Am Chem Soc ; 138(36): 11714-26, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27583570

ABSTRACT

There has been a long-standing controversy regarding the effect of chemical denaturants on the dimensions of unfolded and intrinsically disordered proteins: A wide range of experimental techniques suggest that polypeptide chains expand with increasing denaturant concentration, but several studies using small-angle X-ray scattering (SAXS) have reported no such increase of the radius of gyration (Rg). This inconsistency challenges our current understanding of the mechanism of chemical denaturants, which are widely employed to investigate protein folding and stability. Here, we use a combination of single-molecule Förster resonance energy transfer (FRET), SAXS, dynamic light scattering (DLS), and two-focus fluorescence correlation spectroscopy (2f-FCS) to characterize the denaturant dependence of the unfolded state of the spectrin domain R17 and the intrinsically disordered protein ACTR in two different denaturants. Standard analysis of the primary data clearly indicates an expansion of the unfolded state with increasing denaturant concentration irrespective of the protein, denaturant, or experimental method used. This is the first case in which SAXS and FRET have yielded even qualitatively consistent results regarding expansion in denaturant when applied to the same proteins. To more directly illustrate this self-consistency, we used both SAXS and FRET data in a Bayesian procedure to refine structural ensembles representative of the observed unfolded state. This analysis demonstrates that both of these experimental probes are compatible with a common ensemble of protein configurations for each denaturant concentration. Furthermore, the resulting ensembles reproduce the trend of increasing hydrodynamic radius with denaturant concentration obtained by 2f-FCS and DLS. We were thus able to reconcile the results from all four experimental techniques quantitatively, to obtain a comprehensive structural picture of denaturant-induced unfolded state expansion, and to identify the most likely sources of earlier discrepancies.


Subject(s)
Peptides/chemistry , Protein Denaturation/drug effects , Bayes Theorem , Fluorescence Resonance Energy Transfer , Scattering, Small Angle , X-Ray Diffraction
9.
J Am Chem Soc ; 138(36): 11702-13, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27583687

ABSTRACT

Chemical denaturants are the most commonly used agents for unfolding proteins and are thought to act by better solvating the unfolded state. Improved solvation is expected to lead to an expansion of unfolded chains with increasing denaturant concentration, providing a sensitive probe of the denaturant action. However, experiments have so far yielded qualitatively different results concerning the effects of chemical denaturation. Studies using Förster resonance energy transfer (FRET) and other methods found an increase in radius of gyration with denaturant concentration, but most small-angle X-ray scattering (SAXS) studies found no change. This discrepancy therefore challenges our understanding of denaturation mechanism and more generally the accuracy of these experiments as applied to unfolded or disordered proteins. Here, we use all-atom molecular simulations to investigate the effect of urea and guanidinium chloride on the structure of the intrinsically disordered protein ACTR, which can be studied by experiment over a wide range of denaturant concentration. Using unbiased molecular simulations with a carefully calibrated denaturant model, we find that the protein chain indeed swells with increasing denaturant concentration. This is due to the favorable association of urea or guanidinium chloride with the backbone of all residues and with the side-chains of almost all residues, with denaturant-water transfer free energies inferred from this association in reasonable accord with experimental estimates. Interactions of the denaturants with the backbone are dominated by hydrogen bonding, while interactions with side-chains include other contributions. By computing FRET efficiencies and SAXS intensities at each denaturant concentration, we show that the simulation trajectories are in accord with both experiments on this protein, demonstrating that there is no fundamental inconsistency between the two types of experiment. Agreement with experiment also supports the picture of chemical denaturation described in our simulations, driven by weak association of denaturant with the protein. Our simulations support some assumptions needed for each experiment to accurately reflect changes in protein size, namely, that the commonly used FRET chromophores do not qualitatively alter the results and that possible effects such as preferential solvent partitioning into the interior of the chain do not interfere with the determination of radius of gyration from the SAXS experiments.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Protein Denaturation/drug effects , Molecular Dynamics Simulation , Protein Conformation , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...