Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dermatol Res Pract ; 2012: 309587, 2012.
Article in English | MEDLINE | ID: mdl-22312325

ABSTRACT

Modulation of cell : cell junctions is a key event in cutaneous wound repair. In this study we report that activation of the epidermal growth factor (EGF) receptor disrupts cell : cell adhesion, but with different kinetics and fates for the desmosomal cadherin desmoglein and for E-cadherin. Downregulation of desmoglein preceded that of E-cadherin in vivo and in an EGF-stimulated in vitro wound reepithelialization model. Dual immunofluorescence staining revealed that neither E-cadherin nor desmoglein-2 internalized with the EGF receptor, or with one another. In response to EGF, desmoglein-2 entered a recycling compartment based on predominant colocalization with the recycling marker Rab11. In contrast, E-cadherin downregulation was accompanied by cleavage of the extracellular domain. A broad-spectrum matrix metalloproteinase inhibitor protected E-cadherin but not the desmosomal cadherin, desmoglein-2, from EGF-stimulated disruption. These findings demonstrate that although activation of the EGF receptor regulates adherens junction and desmosomal components, this stimulus downregulates associated cadherins through different mechanisms.

2.
Mol Carcinog ; 45(11): 851-60, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16788982

ABSTRACT

Overexpression of the epidermal growth factor (EGF) receptor occurs frequently in ovarian cancer and is associated with poor patient prognosis. A constitutively active mutant EGF receptor termed variant III (EGFRvIII) has been detected at a high frequency in many human tumors, including those of the ovary. To identify the consequences of EGFRvIII expression in ovarian tumor cells, we introduced EGFRvIII into the epithelial ovarian cancer cell line (OVCA 433). The EGFRvIII-transfected cells displayed a dissociated, motile phenotype and fibroblastic morphology. The EGFRvIII-dependent phenotype was comparable to that observed in EGF-stimulated parental OVCA 433 cultures and required the catalytic activity of the mutant receptor. Disruption of adherens and desmosomal junctions in EGFRvIII expressing cells was evident by immunofluorescent detection of specific junctional components. In addition, Western blot analysis confirmed decreased levels of cellular plakoglobin and beta-catenin in EGFRvIII-expressing cells, and E-cadherin protein and mRNA were nearly absent. The loss of E-cadherin was accompanied by decreased expression of additional ovarian epithelial markers, including keratins 7, 8, and 18 and mucins 1 and 4. In contrast, the mesenchymal markers N-cadherin and vimentin were elevated in EGFRvIII expressing cells. Overall, the switch in cadherins from E-cadherin to N-cadherin, coupled with gain of vimentin expression and loss of the epithelial keratins and mucins typically expressed in well-differentiated epithelial ovarian carcinomas, are consistent with transition to a mesenchymal phenotype as an outcome of EGFRvIII expression. These findings suggest that EGFRvIII expression may regulate phenotypic plasticity in ovarian cancer and thereby contribute to more aggressive disease.


Subject(s)
ErbB Receptors/metabolism , Mesoderm/pathology , Neoplasms, Glandular and Epithelial/pathology , Ovarian Neoplasms/pathology , Blotting, Western , Cell Line, Tumor , Cell Transformation, Neoplastic , Female , Humans , Immunohistochemistry , Neoplasm Metastasis , Neoplasms, Glandular and Epithelial/metabolism , Ovarian Neoplasms/metabolism , Polymerase Chain Reaction , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...