Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34074778

ABSTRACT

Tumors frequently express unmutated self-tumor-associated antigens (self-TAAs). However, trial results using self-TAAs as vaccine targets against cancer are mixed, often attributed to deletion of T cells with high-affinity receptors (TCRs) for self-TAAs during T cell development. Mutating these weak self-TAAs to produce higher affinity, effective vaccines is challenging, since the mutations may not benefit all members of the broad self-TAA-specific T cell repertoire. We previously identified a common weak murine self-TAA that we converted to a highly effective antitumor vaccine by a single amino acid substitution. In this case the modified and natural self-TAAs still raised very similar sets of CD8 T cells. Our structural studies herein show that the modification of the self-TAA resulted in a subtle change in the major histocompatibility complex I-TAA structure. This amino acid substitution allowed a dramatic conformational change in the peptide during subsequent TCR engagement, creating a large increase in TCR affinity and accounting for the efficacy of the modified self-TAA as a vaccine. These results show that carefully selected, well-characterized modifications to a poorly immunogenic self-TAA can rescue the immune response of the large repertoire of weakly responding natural self-TAA-specific CD8 T cells, driving them to proliferate and differentiate into functional effectors. Subsequently, the unmodified self-TAA on the tumor cells, while unable to drive this response, is nevertheless a sufficient target for the CD8 cytotoxic effectors. Our results suggest a pathway for more efficiently identifying variants of common self-TAAs, which could be useful in vaccine development, complementing other current nonantigen-specific immunotherapies.


Subject(s)
Antigens, Neoplasm/immunology , Autoantigens/immunology , CD8-Positive T-Lymphocytes/immunology , Neoplasms, Experimental/immunology , Peptides/immunology , Receptors, Antigen, T-Cell/immunology , Animals , Cancer Vaccines/immunology , Cell Line, Tumor , Female , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/prevention & control , Sf9 Cells , Spodoptera
2.
J Immunol ; 197(4): 1477-88, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27371726

ABSTRACT

Mechanisms of self-tolerance often result in CD8(+) tumor-infiltrating lymphocytes (TIL) with a hypofunctional phenotype incapable of tumor clearance. Using a transplantable colon carcinoma model, we found that CD8(+) T cells became tolerized in <24 h in an established tumor environment. To define the collective impact of pathways suppressing TIL function, we compared genome-wide mRNA expression of tumor-specific CD8(+) T cells from the tumor and periphery. Notably, gene expression induced during TIL hypofunction more closely resembled self-tolerance than viral exhaustion. Differential gene expression was refined to identify a core set of genes that defined hypofunctional TIL; these data comprise the first molecular profile of tumor-specific TIL that are naturally responding and represent a polyclonal repertoire. The molecular profile of TIL was further dissected to determine the extent of overlap and distinction between pathways that collectively restrict T cell functions. As suggested by the molecular profile of TIL, protein expression of inhibitory receptor LAG-3 was differentially regulated throughout prolonged late-G1/early-S phase of the cell cycle. Our data may accelerate efficient identification of combination therapies to boost anti-tumor function of TIL specifically against tumor cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms, Experimental/immunology , Tumor Escape/immunology , Animals , Cell Separation , Disease Models, Animal , Female , Flow Cytometry , High-Throughput Nucleotide Sequencing , Mice , Mice, Inbred BALB C , Oligonucleotide Array Sequence Analysis
3.
J Biol Chem ; 288(46): 33213-25, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24106273

ABSTRACT

Vaccines that incorporate peptide mimics of tumor antigens, or mimotope vaccines, are commonly used in cancer immunotherapy and function by eliciting increased numbers of T cells that cross-react with the native tumor antigen. Unfortunately, they often elicit T cells that do not cross-react with or that have low affinity for the tumor antigen. Using a high affinity tumor-specific T cell clone, we identified a panel of mimotope vaccines for the dominant peptide antigen from a mouse colon tumor that elicits a range of tumor protection following vaccination. The TCR from this high affinity T cell clone was rarely identified in ex vivo evaluation of tumor-specific T cells elicited by mimotope vaccination. Conversely, a low affinity clone found in the tumor and following immunization was frequently identified. Using peptide libraries, we determined if this frequently identified TCR improved the discovery of efficacious mimotopes. We demonstrated that the representative TCR identified more protective mimotopes than the high affinity TCR. These results suggest that targeting a dominant fraction of tumor-specific T cells generates potent immunity and that consideration of the available T cell repertoire is necessary for targeted T cell therapy. These results have important implications when optimizing mimotope vaccines for cancer immunotherapy.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Immunotherapy , Neoplasm Proteins/immunology , Neoplasms/therapy , Peptide Library , Receptors, Antigen, T-Cell/immunology , Animals , Cancer Vaccines/pharmacology , Mice , Mice, Inbred BALB C , Neoplasms/immunology
4.
Oncoimmunology ; 2(4): e23492, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23734309

ABSTRACT

Tumor-associated antigen (TAA)-targeting mimotope peptides exert more prominent immunostimulatory functions than unmodified TAAs, with the caveat that some T-cell clones exhibit a relatively low affinity for TAAs. Combining mimotope-based vaccines with native TAAs in a prime-boost setting significantly improves antitumor immunity.

5.
Immunol Res ; 55(1-3): 34-47, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22936035

ABSTRACT

Immune recognition and elimination of cancerous cells is the primary goal of cancer immunotherapy. However, obstacles including immune tolerance and tumor-induced immunosuppression often limit beneficial immune responses. Vaccination is one proposed intervention that may help to overcome these issues and is an active area of study in cancer immunotherapy. Immunizing with tumor antigenic peptides is a promising, straight-forward vaccine strategy hypothesized to boost preexisting antitumor immunity. However, tumor antigens are often weak T cell agonists, attributable to several mechanisms, including immune self-tolerance and poor immunogenicity of self-derived tumor peptides. One strategy for overcoming these mechanisms is vaccination with mimotopes, or peptide mimics of tumor antigens, which alter the antigen presentation and/or T cell activation to increase the expansion of tumor-specific T cells. Evaluation of mimotope vaccine strategies has revealed that even subtle alterations in peptide sequence can dramatically alter antigen presentation and T cell receptor recognition. Most of this research has been performed using T cell clones, which may not be accurate representations of the naturally occurring antitumor response. The relationship between clones generated after mimotope vaccination and the polyclonal T cell repertoire is unclear. Our work with mimotopes in a mouse model of colon carcinoma has revealed important insights into these issues. We propose that the identification of mimotopes based on stimulation of the naturally responding T cell repertoire will dramatically improve the efficacy of mimotope vaccination.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Neoplasms/therapy , Vaccines, Subunit/immunology , Animals , Antigens, Neoplasm/immunology , Humans , Neoplasms/immunology
6.
Cancer Res ; 73(1): 74-85, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23161490

ABSTRACT

Vaccination with antigens expressed by tumors is one strategy for stimulating enhanced T-cell responses against tumors. However, these peptide vaccines rarely result in efficient expansion of tumor-specific T cells or responses that protect against tumor growth. Mimotopes, or peptide mimics of tumor antigens, elicit increased numbers of T cells that crossreact with the native tumor antigen, resulting in potent antitumor responses. Unfortunately, mimotopes may also elicit cells that do not crossreact or have low affinity for tumor antigen. We previously showed that one such mimotope of the dominant MHC class I tumor antigen of a mouse colon carcinoma cell line stimulates a tumor-specific T-cell clone and elicits antigen-specific cells in vivo, yet protects poorly against tumor growth. We hypothesized that boosting the mimotope vaccine with the native tumor antigen would focus the T-cell response elicited by the mimotope toward high affinity, tumor-specific T cells. We show that priming T cells with the mimotope, followed by a native tumor-antigen boost, improves tumor immunity compared with T cells elicited by the same prime with a mimotope boost. Our data suggest that the improved tumor immunity results from the expansion of mimotope-elicited tumor-specific T cells that have increased avidity for the tumor antigen. The enhanced T cells are phenotypically distinct and enriched for T-cell receptors previously correlated with improved antitumor immunity. These results suggest that incorporation of native antigen into clinical mimotope vaccine regimens may improve the efficacy of antitumor T-cell responses.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , Lymphocyte Activation/immunology , Neoplasms/immunology , T-Lymphocytes/immunology , Animals , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Female , Mice , Mice, Inbred BALB C
7.
Cancer Immunol Immunother ; 61(10): 1627-38, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22350070

ABSTRACT

A major goal of immunotherapy for cancer is the activation of T cell responses against tumor-associated antigens (TAAs). One important strategy for improving antitumor immunity is vaccination with peptide variants of TAAs. Understanding the mechanisms underlying the expansion of T cells that respond to the native tumor antigen is an important step in developing effective peptide-variant vaccines. Using an immunogenic mouse colon cancer model, we compare the binding properties and the TCR genes expressed by T cells elicited by peptide variants that elicit variable antitumor immunity directly ex vivo. The steady-state affinity of the natural tumor antigen for the T cells responding to effective peptide vaccines was higher relative to ineffective peptides, consistent with their improved function. Ex vivo analysis showed that T cells responding to the effective peptides expressed a CDR3ß motif, which was also shared by T cells responding to the natural antigen and not those responding to the less effective peptide vaccines. Importantly, these data demonstrate that peptide vaccines can expand T cells that naturally respond to tumor antigens, resulting in more effective antitumor immunity. Future immunotherapies may require similar stringent analysis of the responding T cells to select optimal peptides as vaccine candidates.


Subject(s)
Cancer Vaccines/immunology , Complementarity Determining Regions/immunology , T-Lymphocytes/immunology , Animals , Antigens, Neoplasm/immunology , Colonic Neoplasms/immunology , Female , Mice , Mice, Inbred BALB C , Receptors, Antigen, T-Cell/immunology , Vaccines, Subunit/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...