Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 50(11): 7245-7251, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37334736

ABSTRACT

BACKGROUND: Hydrated electrons, which are short-lived products of radiolysis in water, increase the optical absorption of water, providing a pathway toward near-tissue-equivalent clinical radiation dosimeters. This has been demonstrated in high-dose-per-pulse radiochemistry research, but, owing to the weak absorption signal, its application in existing low-dose-per-pulse radiotherapy provided by clinical linear accelerators (linacs) has yet to be investigated. PURPOSE: The aims of this study were to measure the optical absorption associated with hydrated electrons produced by clinical linacs and to assess the suitability of the technique for radiotherapy (⩽ 1 cGy per pulse) applications. METHODS: 40 mW of 660-nm laser light was sent five passes through deionized water contained in a 10 × 4 × $\times 4\times$ 2 cm3 glass-walled cavity by using four broadband dielectric mirrors, two on each side of the cavity. The light was collected with a biased silicon photodetector. The water cavity was then irradiated by a Varian TrueBeam linac with both photon (10 MV FFF, 6 MV FFF, 6 MV) and electron beams (6 MeV) while monitoring the transmitted laser power for absorption transients. Radiochromic EBT3 film measurements were also performed for comparison. RESULTS: Examination of the absorbance profiles showed clear absorption changes in the water when radiation pulses were delivered. Both the amplitude and the decay time of the signal appeared consistent with the absorbed dose and the characteristics of the hydrated electrons. By using literature value for the hydrated electron radiation chemical yield (3.0±0.3), we inferred doses of 2.1±0.2 mGy (10 MV FFF), 1.3±0.1 mGy (6 MV FFF), 0.45±0.06 mGy (6 MV) for photons, and 0.47±0.05 mGy (6 MeV) for electrons, which differed from EBT3 film measurements by 0.6%, 0.8%, 10%, and 15.7%, respectively. The half-life of the hydrated electrons in the solution was ∼ 24 µ $\umu$ s. CONCLUSIONS: By measuring 660-nm laser light transmitted through a cm-scale, multi-pass water cavity, we observed absorption transients consistent with hydrated electrons generated by clinical linac radiation. The agreement between our inferred dose and EBT3 film measurements suggests this proof-of-concept system represents a viable pathway toward tissue-equivalent dosimeters for clinical radiotherapy applications.


Subject(s)
Electrons , Radiation Dosimeters , Photons/therapeutic use , Phantoms, Imaging , Particle Accelerators , Water , Radiotherapy Dosage , Radiometry/methods
2.
Phys Med ; 107: 102540, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36804695

ABSTRACT

In hydrated electron (e-aq) dosimetry, absorbed radiation dose to water is measured by monitoring the concentration of radiation-induced e-aq. However, to obtain accurate dose, the radiation chemical yield of e-aq, G(e-aq), is needed for the radiation quality/setup under investigation. The aim of this study was to investigate the time-evolution of the G-values for the main generated reactive species during water radiolysis using GEANT4-DNA. The effects of cluster size and linear energy transfer (LET) on G(e-aq) were examined. Validity of GEANT4-DNA for calculation of G(e-aq) for clinically relevant energies was studied. Three scenarios were investigated with different phantom sizes and incoming electron energies (1 keV to 1 MeV). The time evolution of G(e-aq) was in good agreement with published data and did not change with decreasing phantom size. The time-evolution of the G-values increases with increasing LET for all radiolytic species. The particle tracks formed with high-energy electrons are separated and the resulting reactive species develop independently in time. With decreasing energy, the mean separation distance between reactive species decreases. The particle tracks might not initially overlap but will overlap shortly thereafter due to diffusion of reactive species, increasing the probability of e-aq recombination with other species. This also explains the decrease of G(e-aq) with cluster size and LET. Finally, if all factors are kept constant, as the incoming electron energy increases to clinically relevant energies, G(e-aq) remains similar to its value at 1 MeV, hence GEANT4-DNA can be used for clinically relevant energies.


Subject(s)
Electrons , Linear Energy Transfer , Monte Carlo Method , Water , DNA , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...