Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35956842

ABSTRACT

Vineyard exposure to wildfire smoke can taint grapes and wine. To understand the impact of this taint, it is imperative that the analytical methods used are accurate and precise. This study compared the variance across nine commercial and research laboratories following quantitative analysis of the same set of smoke-tainted wines. In parallel, correlations between the interlaboratory consensus values for smoke-taint markers and sensory analyses of the same smoke-tainted wines were evaluated. For free guaiacol, the mean accuracy was 94 ± 11% in model wine, while the free cresols and 4-methylguaiacol showed a negative bias and/or decreased precision relative to guaiacol. Similar trends were observed in smoke-tainted wines, with the cresols and glycosidically bound markers demonstrating high variance. Collectively, the interlaboratory results show that data from a single laboratory can be used quantitatively to understand smoke-taint. Results from different laboratories, however, should not be directly compared due to the high variance between study participants. Correlations between consensus compositional data and sensory evaluations suggest the risk of perceivable smoke-taint can be predicted from free cresol concentrations, overcoming limitations associated with the occurrence of some volatile phenols, guaiacol in particular, as natural constituents of some grape cultivars and of the oak used for barrel maturation.


Subject(s)
Vitis , Volatile Organic Compounds , Wine , Consensus , Cresols/metabolism , Guaiacol/analysis , Humans , Phenols/analysis , Smoke/analysis , Vitis/metabolism , Volatile Organic Compounds/analysis , Wine/analysis
2.
Int J Mol Sci ; 23(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35054899

ABSTRACT

Bread wheat is the most widely cultivated crop worldwide, used in the production of food products and a feed source for animals. Selection tools that can be applied early in the breeding cycle are needed to accelerate genetic gain for increased wheat production while maintaining or improving grain quality if demand from human population growth is to be fulfilled. Proteomics screening assays of wheat flour can assist breeders to select the best performing breeding lines and discard the worst lines. In this study, we optimised a robust LC-MS shotgun quantitative proteomics method to screen thousands of wheat genotypes. Using 6 cultivars and 4 replicates, we tested 3 resuspension ratios (50, 25, and 17 µL/mg), 2 extraction buffers (with urea or guanidine-hydrochloride), 3 sets of proteases (chymotrypsin, Glu-C, and trypsin/Lys-C), and multiple LC settings. Protein identifications by LC-MS/MS were used to select the best parameters. A total 8738 wheat proteins were identified. The best method was validated on an independent set of 96 cultivars and peptides quantities were normalised using sample weights, an internal standard, and quality controls. Data mining tools found particularly useful to explore the flour proteome are presented (UniProt Retrieve/ID mapping tool, KEGG, AgriGO, REVIGO, and Pathway Tools).


Subject(s)
Edible Grain/metabolism , Plant Proteins/metabolism , Proteome , Proteomics , Triticum/metabolism , Chromatography, Liquid , Edible Grain/genetics , Flour , Gene Expression Regulation, Plant , Humans , Proteomics/methods , Reproducibility of Results , Tandem Mass Spectrometry , Triticum/genetics
3.
Environ Pollut ; 299: 118868, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35063546

ABSTRACT

Contamination of urban surface waters by herbicides is an increasing concern; however, sources of contamination are poorly understood, hindering the development of mitigation and regulatory strategies. Impervious surfaces, such as concrete in driveways and paths are considered an important facilitator for herbicide runoff to urban surface waters following applications by residential homeowners. This study assessed the transferability of a herbicide from concrete pavers treated with an off-the-shelf product, containing simazine as the active herbicide, marketed for residential homeowner application to impervious surfaces. Commercially available pavers were treated according to label directions and the effects of exposure time prior to irrigation, repeated irrigations, and dry time between irrigations on transferability of simazine to runoff were assessed. Simazine transferability was greatest when receiving an initial irrigation 1 h after application, with concentrations in runoff reduced by half when exposure times prior to the first irrigation were >2 days. Concentrations remained stable for repeated irrigations up to 320 days and exposures to outdoor conditions of 180 days prior to a first irrigation. Dry time between irrigations significantly influenced simazine transfer to runoff. Dry periods of 140 days resulted in approximately a 4-times increase in simazine transferability to runoff. These results suggest that herbicides used by homeowners, or any other users, on impervious surfaces are available to contaminate runoff for prolonged time periods following application at concentrations that may pose risks to aquatic life and for reuse of harvested runoff on parks and gardens. Regulators should consider the potential of hard surfaces to act as reservoirs for herbicides when developing policies and labelling products.


Subject(s)
Herbicides , Water Pollutants, Chemical , Herbicides/analysis , Simazine/analysis , Water Pollutants, Chemical/analysis
4.
Gigascience ; 122022 12 28.
Article in English | MEDLINE | ID: mdl-37919977

ABSTRACT

BACKGROUND: Late-maturity alpha-amylase (LMA) is a wheat genetic defect causing the synthesis of high isoelectric point alpha-amylase following a temperature shock during mid-grain development or prolonged cold throughout grain development, both leading to starch degradation. While the physiology is well understood, the biochemical mechanisms involved in grain LMA response remain unclear. We have applied high-throughput proteomics to 4,061 wheat flours displaying a range of LMA activities. Using an array of statistical analyses to select LMA-responsive biomarkers, we have mined them using a suite of tools applicable to wheat proteins. RESULTS: We observed that LMA-affected grains activated their primary metabolisms such as glycolysis and gluconeogenesis; TCA cycle, along with DNA- and RNA- binding mechanisms; and protein translation. This logically transitioned to protein folding activities driven by chaperones and protein disulfide isomerase, as well as protein assembly via dimerisation and complexing. The secondary metabolism was also mobilized with the upregulation of phytohormones and chemical and defence responses. LMA further invoked cellular structures, including ribosomes, microtubules, and chromatin. Finally, and unsurprisingly, LMA expression greatly impacted grain storage proteins, as well as starch and other carbohydrates, with the upregulation of alpha-gliadins and starch metabolism, whereas LMW glutenin, stachyose, sucrose, UDP-galactose, and UDP-glucose were downregulated. CONCLUSIONS: To our knowledge, this is not only the first proteomics study tackling the wheat LMA issue but also the largest plant-based proteomics study published to date. Logistics, technicalities, requirements, and bottlenecks of such an ambitious large-scale high-throughput proteomics experiment along with the challenges associated with big data analyses are discussed.


Subject(s)
Proteome , Seeds , Seeds/genetics , Seeds/metabolism , Proteome/metabolism , Triticum/genetics , Triticum/metabolism , alpha-Amylases/genetics , alpha-Amylases/metabolism , Community Resources , Starch/metabolism , Uridine Diphosphate/metabolism
5.
Environ Sci Pollut Res Int ; 24(8): 7274-7284, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28101712

ABSTRACT

Urban stormwater samples were collected from five aquatic systems in Melbourne, Australia, on six occasions between October 2011 and March 2012 and tested for 30 herbicides and 14 trace metals. Nineteen different herbicides were observed in one or more water samples from the five sites; chemicals observed at more than 40% of sites were simazine (100%), MCPA (83%), diuron (63%) and atrazine (53%). Using the toxicity unit (TU) concept to assess potential risk to aquatic ecosystems, none of the detected herbicides were considered to pose an individual, group or collective short-term risk to fish or zooplankton in the waters studied. However, 13 herbicides had TU values suggesting they might have posed an individual risk to primary producers at the time of sampling. Water quality guideline levels were exceeded on many occasions for Cd, Cu, Cr, Pb and Zn. Similarly, RQmed and RQmax exceeded 1 for Cd, Cr, Cu, Mn, Ni, Pb, V and Zn. Almost all the metals screened exceeded a log10TU of -3 for every trophic level, suggesting that there may have been some impact on aquatic organisms in the studied waterbodies. Our data indicate that Melbourne's urban aquatic environments may be being impacted by approved domestic, industrial and sporting application of herbicides and that stormwater quality needs to be carefully assessed prior to reuse. Further research is required to understand the performance of different urban stormwater wetland designs in removing pesticides and trace metals. Applying the precautionary principle to herbicide regulation is important to ensure there is more research and assessment of the long-term 'performance' standard of all herbicides and throughout their 'life cycle'. Implementing such an approach will also ensure government, regulators, decision makers, researchers, policy makers and industry have the best possible information available to improve the management of chemicals, from manufacture to use.


Subject(s)
Environmental Monitoring , Herbicides , Metals, Heavy , Water Pollutants, Chemical , Water/chemistry , Animals , Aquatic Organisms/drug effects , Australia , Fishes , Herbicides/analysis , Herbicides/toxicity , Metals, Heavy/analysis , Metals, Heavy/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
6.
Environ Sci Pollut Res Int ; 23(6): 5881-91, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26593725

ABSTRACT

Water and sediment samples were collected from up to 17 sites in waterways entering the Corner Inlet Marine National Park monthly between November 2009 and April 2010, with the Chemcatcher passive sampler system deployed at these sites in November 2009 and March 2010. Trace metal concentrations were low, with none occurring at concentrations with the potential for adverse ecological effects. The agrochemical residues data showed the presence of a small number of pesticides at very low concentration (ng/L) in the surface waters of streams entering the Corner Inlet, and as widespread, but still limited contamination of sediments. Concentrations of pesticides detected were relatively low and several orders of magnitude below reported ecotoxicological effect and hazardous concentration values. The low levels of pesticides detected in this study indicate that agricultural industries were responsible agrochemical users. This research project is a rarity in aligning both agrochemical usage data obtained from chemical resellers in the target catchment with residue analysis of environmental samples. Based on frequency of detection and concentrations, prometryn is the priority chemical of concern for both the water and sediments studied, but this chemical was not listed in reseller data. Consequently, the risks may be greater than the field data would suggest, and priorities for monitoring different since some commonly used herbicides (such as glyphosate, phenoxy acid herbicides, and sulfonyl urea herbicides) were not screened. Therefore, researchers, academia, industry, and government need to identify ways to achieve a more coordinated land use approach for obtaining information on the use of chemicals in a catchment, their presence in waterways, and the longer term performance of chemicals, particularly where they are used multiple times in a year.


Subject(s)
Geologic Sediments/chemistry , Pesticides/analysis , Water Pollutants, Chemical/analysis , Bays , Environmental Monitoring , Herbicides/analysis , Metals/analysis , Parks, Recreational , Rivers/chemistry , Trace Elements/analysis , Victoria
7.
Environ Sci Pollut Res Int ; 22(13): 10214-26, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25697552

ABSTRACT

Samples of water and sediments were collected from 24 urban wetlands in Melbourne, Australia, in April 2010, and tested for more than 90 pesticides using a range of gas chromatographic (GC) and liquid chromatographic (LC) techniques, sample 'hormonal' activity using yeast-based recombinant receptor-reporter gene bioassays, and trace metals using spectroscopic techniques. At the time of sampling, there was almost no estrogenic activity in the water column. Twenty-three different pesticide residues were observed in one or more water samples from the 24 wetlands; chemicals observed at more than 40% of sites were simazine (100%), atrazine (79%), and metalaxyl and terbutryn (46%). Using the toxicity unit (TU) concept, less than 15% of the detected pesticides were considered to pose an individual, short-term risk to fish or zooplankton in the ponds and wetlands. However, one pesticide (fenvalerate) may have posed a possible short-term risk to fish (log10TUf > -3), and three pesticides (azoxystrobin, fenamiphos and fenvalerate) may have posed a risk to zooplankton (logTUzp between -2 and -3); all the photosystem II (PSII) inhibiting herbicides may have posed a risk to primary producers in the ponds and wetlands (log10TUap and/or log10TUalg > -3). The wetland sediments were contaminated with 16 different pesticides; no chemicals were observed at more than one third of sites, but based on frequency of detection and concentrations, bifenthrin (33%, maximum 59 µg/kg) is the priority insecticide of concern for the sediments studied. Five sites returned a TU greater than the possible effect threshold (i.e. log10TU > 1) as a result of bifenthrin contamination of their sediments. Most sediments did not exceed Australian sediment quality guideline levels for trace metals. However, more than half of the sites had threshold effect concentration quotients (TECQ) values >1 for Cu (58%), Pb (50%), Ni (67%) and Zn (63%), and 75% of sites had mean probable effect concentration quotients (PECQ) >0.2, suggesting that the collected sediments may have been having some impact on sediment-dwelling organisms.


Subject(s)
Geologic Sediments/chemistry , Metals/analysis , Pesticides/analysis , Water Pollutants, Chemical/analysis , Wetlands , Animals , Environmental Monitoring , Fishes , Insecticides/analysis , Pesticide Residues/analysis , Ponds , Trace Elements/analysis , Victoria , Water/analysis
8.
Arch Environ Contam Toxicol ; 67(3): 358-73, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24935816

ABSTRACT

Herbicides are regularly applied in horticultural production systems and may migrate off-site, potentially posing an ecological risk to surface waterways. However, few studies have investigated the levels and potential ecotoxicological impact of herbicides in horticultural catchments in southern Australia. This study investigated the presence of 10 herbicides at 18 sites during a 5-month period in horticulturally important areas of the Yarra Valley in southeastern Australia. Seven of the 10 herbicides were detected in the streams, in 39 % of spot water samples, in 25 % of surface sediment samples, and in >70 % of the passive sampler systems deployed. Few samples contained residues of ≥2 herbicides. Simazine was the herbicide most frequently detected in water, sediment, and passive sampler samples and had the highest concentrations in water (0.67 µg/L) and sediment (260 µg/kg dry weight). Generally the concentrations of the herbicides detected were several orders of magnitude lower than reported ecotoxicological effect values, including those for aquatic plants and algae, suggesting that concentrations of individual chemicals in the catchment were unlikely to pose an ecological risk. However, little is known about the combined effects of simultaneous, low-level exposure of multiple herbicides of the same mode of action on Australian aquatic organisms nor their contribution when found in mixtures with other pesticides. Further research is required to adequately assess the risk of pesticides in Victorian aquatic environments.


Subject(s)
Environmental Monitoring , Fresh Water/chemistry , Herbicides/analysis , Water Pollutants, Chemical/analysis , Australia , Geologic Sediments/chemistry
9.
J Chromatogr A ; 1325: 56-64, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24373535

ABSTRACT

The method presented uses a mixed-mode anion exchange SPE and liquid chromatography tandem mass spectrometry to analyze 5 sulfonylurea, 8 phenoxy acid, 12 triazine and 6 other herbicides in environmental waters. The mixed-mode SPE cartridge is able to retain a wide range of herbicides with acidic-neutral-basic characteristics, particularly the highly polar and acidic compounds clopyralid, dicamba and picloram. The neutral and basic herbicides can be effectively eluted with methanol, after which the acidic herbicides can be eluted using acidified methanol. The method has achieved an LOD of 0.7-3ng/L for the sulfonylureas, 4-12ng/L for the phenoxy acids and 0.4-30ng/L for the triazine and additional herbicides, with recoveries in the range 76-107%, 73-126%, and 65-104%, respectively. The precision of the method, calculated as relative standard deviation (RSD), was below 10% for both sulfonylurea and phenoxy acid herbicides, and less than 20% for the remaining herbicides. The developed method was used to determine the concentration of target herbicides in a range of environmental waters, and many of the target herbicides were detected at ng/L level.


Subject(s)
Chromatography, High Pressure Liquid/methods , Herbicides/analysis , Phenols/analysis , Solid Phase Extraction/methods , Sulfonylurea Compounds/analysis , Tandem Mass Spectrometry/methods , Triazines/analysis , Water Pollutants, Chemical/analysis , Acids/analysis , Picolinic Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...