Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 108(1-1): 014602, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37583241

ABSTRACT

In this work we consider a simulation strategy for assembling Janus nanoparticles in oil-in-water emulsion droplets by evaporation based on the dissipative particle dynamics method. Our simple method reproduces all the observed cluster configurations that have been explored experimentally. In addition, the kinetic process of cluster formation is systematically investigated. We observe a structural transition from spherical packings to minimal second-moment configurations via visual inspection and a simple angle parameter. We reveal that the critical volume at which the transition occurs is a cubic function of the number of particles, N. Our approach also allows us to anticipate higher-order clusters, overcoming the limitations of the standard methods in the literature. Similarly to small N values, we find that for each N in the range of 16-39, all final clusters have a unique configuration.

3.
Cancers (Basel) ; 14(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36551540

ABSTRACT

Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that regulates the transcription of many genes that are responsible for the adaptation and survival of tumor cells in hypoxic environments. Over the past few decades, tremendous efforts have been made to comprehensively understand the role of HIF-1 in tumor progression. Based on the pivotal roles of HIF-1 in tumor biology, many HIF-1 inhibitors interrupting expression, stabilization, DNA binding properties, or transcriptional activity have been identified as potential therapeutic agents for various cancers, yet none of these inhibitors have yet been successfully translated into clinically available cancer treatments. In this review, we briefly introduce the regulation of the HIF-1 pathway and summarize its roles in tumor cell proliferation, angiogenesis, and metastasis. In addition, we explore the implications of HIF-1 in the development of drug resistance and cancer-related pain: the most commonly encountered obstacles during conventional anticancer therapies. Finally, the current status of HIF-1 inhibitors in clinical trials and their perspectives are highlighted, along with their modes of action. This review provides new insights into novel anticancer drug development targeting HIF-1. HIF-1 inhibitors may be promising combinational therapeutic interventions to improve the efficacy of current cancer treatments and reduce drug resistance and cancer-related pain.

4.
J Ginseng Res ; 46(6): 819-829, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36312738

ABSTRACT

Background: Anxiolytic properties of Korean Red Ginseng (KRG) have been previously reported. However, the exact mechanism(s) of action remains to be elucidated. The present study investigated the effect of KRG on immobilization-induced anxiety-like behaviors in mice and explored the involvement of the serotonin and GABA systems and BDNF in the anxiolytic action. Methods: Mice were orally administered with KRG (200 mg/kg/day) for 4 weeks and immobilized once daily for 2 h. p-Chlorophenylalanine (p-CPA) was intraperitoneally injected on day 22-28, and flumazenil or bicuculline was injected on day 25-28. After behavioral evaluations, brains were dissected for biochemical analyses. Results: KRG improved immobilization-induced anxiety-like behaviors in mice, as assessed by the elevated plus maze (EPM) and marble burying tests (MBT). The anxiolytic effect of KRG was comparable to that of fluoxetine, a reference drug clinically used for anxiety disorders. A serotonin synthesis inhibitor, p-CPA, blocked the effect of KRG in the EPM and MBT, indicating the requirement of serotonin synthesis for anxiolytic action. In addition, the anxiolytic effect of KRG was inhibited by bicuculline (a GABAA antagonist) in MBT, implying the involvement of GABA transmission. Western blotting analyses revealed that KRG upregulated the expression of tryptophan hydroxylase and GABAA receptor in the brain, which was blocked by p-CPA. Enhanced BDNF expression by KRG in the hippocampus was also indicated to mediate the anxiolytic action of KRG in immobilized mice. Conclusion: KRG exhibited the anxiolytic effect in immobilized mice by multiple mechanisms of action, involving enhanced serotonin and GABA transmissions and BDNF expression.

5.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36142500

ABSTRACT

Our structure-based virtual screening of the FDA-approved drug library has revealed that sonidegib, a smoothened antagonist clinically used to treat basal cell carcinoma, is a potential c-Jun N-terminal kinase 3 (JNK3) inhibitor. This study investigated the binding of sonidegib to JNK3 via 19F NMR and its inhibitory effect on JNK phosphorylation in BV2 cells. Pharmacological properties of sonidegib to exert anti-inflammatory and anti-migratory effects were also characterized. We found that sonidegib bound to the ATP binding site of JNK3 and inhibited JNK phosphorylation in BV2 cells, confirming our virtual screening results. Sonidegib also inhibited the phosphorylation of MKK4 and c-Jun, the upstream and downstream signals of JNK, respectively. It reduced the lipopolysaccharide (LPS)-induced production of pro-inflammatory factors, including interleukin-1ß (IL-1ß), IL-6, tumor necrosis factor-α (TNF-α), and nitric oxide (NO), and the expression of inducible NO synthase and cyclooxygenase-2. The LPS-induced cell migration was suppressed by sonidegib. Sonidegib inhibited the LPS-induced IκBα phosphorylation, thereby blocking NF-κB nuclear translocation. Consistent with these findings, orally administered sonidegib attenuated IL-6 and TNF-α levels in the brains of LPS-treated mice. Collectively, our results indicate that sonidegib suppresses inflammation and cell migration in LPS-treated BV2 cells and mice by inhibiting JNK and NF-κB signaling. Therefore, sonidegib may be implicated for drug repurposing to alleviate neuroinflammation associated with microglial activation.


Subject(s)
Lipopolysaccharides , NF-kappa B , Adenosine Triphosphate/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Biphenyl Compounds , Cell Movement , Cyclooxygenase 2/metabolism , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Mice , Microglia/metabolism , Mitogen-Activated Protein Kinase 10/metabolism , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Pyridines , Tumor Necrosis Factor-alpha/metabolism
6.
Biomol Ther (Seoul) ; 30(5): 455-464, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35993250

ABSTRACT

Efonidipine, a calcium channel blocker, is widely used for the treatment of hypertension and cardiovascular diseases. In our preliminary study using structure-based virtual screening, efonidipine was identified as a potential inhibitor of c-Jun N-terminal kinase 3 (JNK3). Although its antihypertensive effect is widely known, the role of efonidipine in the central nervous system has remained elusive. The present study investigated the effects of efonidipine on the inflammation and cell migration induced by lipopolysaccharide (LPS) using murine BV2 and human HMC3 microglial cell lines and elucidated signaling molecules mediating its effects. We found that the phosphorylations of JNK and its downstream molecule c-Jun in LPS-treated BV2 cells were declined by efonidipine, confirming the finding from virtual screening. In addition, efonidipine inhibited the LPS-induced production of pro-inflammatory factors, including interleukin-1ß (IL-1ß) and nitric oxide. Similarly, the IL-1ß production in LPS-treated HMC3 cells was also inhibited by efonidipine. Efonidipine markedly impeded cell migration stimulated by LPS in both cells. Furthermore, it inhibited the phosphorylation of inhibitor kappa B, thereby suppressing nuclear translocation of nuclear factor-κB (NF-κB) in LPS-treated BV2 cells. Taken together, efonidipine exerts anti-inflammatory and anti-migratory effects in LPS-treated microglial cells through inhibition of the JNK/NF-κB pathway. These findings imply that efonidipine may be a potential candidate for drug repositioning, with beneficial impacts on brain disorders associated with neuroinflammation.

7.
Int J Mol Sci ; 22(16)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34445767

ABSTRACT

The c-Jun N-terminal kinases (JNKs) are implicated in many neuropathological conditions, including neurodegenerative diseases. To explore potential JNK3 inhibitors from the U.S. Food and Drug Administration-approved drug library, we performed structure-based virtual screening and identified azelastine (Aze) as one of the candidates. NMR spectroscopy indicated its direct binding to the ATP-binding site of JNK3, validating our observations. Although the antihistamine effect of Aze is well documented, the involvement of the JNK pathway in its action remains to be elucidated. This study investigated the effects of Aze on lipopolysaccharide (LPS)-induced JNK phosphorylation, pro-inflammatory mediators, and cell migration in BV2 microglial cells. Aze was found to inhibit the LPS-induced phosphorylation of JNK and c-Jun. It also inhibited the LPS-induced production of pro-inflammatory mediators, including interleukin-6, tumor necrosis factor-α, and nitric oxide. Wound healing and transwell migration assays indicated that Aze attenuated LPS-induced BV2 cell migration. Furthermore, Aze inhibited LPS-induced IκB phosphorylation, thereby suppressing nuclear translocation of NF-κB. Collectively, our data demonstrate that Aze exerts anti-inflammatory and anti-migratory effects through inhibition of the JNK/NF-κB pathway in BV2 cells. Based on our findings, Aze may be a potential candidate for drug repurposing to mitigate neuroinflammation in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cell Movement/drug effects , Inflammation/drug therapy , MAP Kinase Signaling System/drug effects , Microglia/drug effects , NF-kappa B/metabolism , Phthalazines/pharmacology , Animals , Cell Line , Inflammation/chemically induced , Inflammation/metabolism , Inflammation Mediators/metabolism , Interleukin-6/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/pharmacology , Mice , Microglia/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism
8.
Int J Mol Sci ; 22(5)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802409

ABSTRACT

Novel 1,8-naphthyridine-2-carboxamide derivatives with various substituents (HSR2101-HSR2113) were synthesized and evaluated for their effects on the production of pro-inflammatory mediators and cell migration in lipopolysaccharide (LPS)-treated BV2 microglial cells. Among the tested compounds, HSR2104 exhibited the most potent inhibitory effects on the LPS-stimulated production of inflammatory mediators, including nitric oxide (NO), tumor necrosis factor-α, and interleukin-6. Therefore, this compound was chosen for further investigation. We found that HSR2104 attenuated levels of inducible NO synthase and cyclooxygenase 2 in LPS-treated BV2 cells. In addition, it markedly suppressed LPS-induced cell migration as well as the generation of intracellular reactive oxygen species (ROS). Moreover, HSR2104 abated the LPS-triggered nuclear translocation of nuclear factor-κB (NF-κB) through inhibition of inhibitor kappa Bα phosphorylation. Furthermore, it reduced the expressions of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) in LPS-treated BV2 cells. Similar results were observed with TAK242, a specific inhibitor of TLR4, suggesting that TLR4 is an upstream regulator of NF-κB signaling in BV2 cells. Collectively, our findings demonstrate that HSR2104 exhibits anti-inflammatory and anti-migratory activities in LPS-treated BV2 cells via the suppression of ROS and TLR4/MyD88/NF-κB signaling pathway. Based on our observations, HSR2104 may have a beneficial impact on inflammatory responses and microglial cell migration involved in the pathogenesis of various neurodegenerative disorders.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cell Movement/drug effects , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Naphthyridines/pharmacology , Reactive Oxygen Species/metabolism , Toll-Like Receptor 4/metabolism , Animals , Cells, Cultured , Cyclooxygenase 2/metabolism , Inflammation Mediators/pharmacology , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/drug effects , Mice , Microglia/drug effects , Microglia/metabolism , Nitric Oxide/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism
9.
Int J Mol Sci ; 21(7)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230861

ABSTRACT

Eleven novel isoquinoline-1-carboxamides (HSR1101~1111) were synthesized and evaluated for their effects on lipopolysaccharide (LPS)-induced production of pro-inflammatory mediators and cell migration in BV2 microglial cells. Three compounds (HSR1101~1103) exhibited the most potent suppression of LPS-induced pro-inflammatory mediators, including interleukin (IL)-6, tumor necrosis factor-alpha, and nitric oxide (NO), without significant cytotoxicity. Among them, only N-(2-hydroxyphenyl) isoquinoline-1-carboxamide (HSR1101) was found to reverse LPS-suppressed anti-inflammatory cytokine IL-10, so it was selected for further characterization. HSR1101 attenuated LPS-induced expression of inducible NO synthase and cyclooxygenase-2. Particularly, HSR1101 abated LPS-induced nuclear translocation of NF-κB through inhibition of IκB phosphorylation. Furthermore, HSR1101 inhibited LPS-induced cell migration and phosphorylation of mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 MAPK. The specific MAPK inhibitors, U0126, SP600125, and SB203580, suppressed LPS-stimulated pro-inflammatory mediators, cell migration, and NF-κB nuclear translocation, indicating that MAPKs may be the upstream kinase of NF-κB signaling. Collectively, these results demonstrate that HSR1101 is a potent and promising compound suppressing LPS-induced inflammation and cell migration in BV2 microglial cells, and that inhibition of the MAPKs/NF-κB pathway mediates its anti-inflammatory and anti-migratory effects. Based on our findings, HSR1101 may have beneficial impacts on various neurodegenerative disorders associated with neuroinflammation and microglial activation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Microglia/drug effects , Microglia/metabolism , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Cell Movement/drug effects , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Inflammation Mediators/metabolism , Inhibitory Concentration 50 , Interleukin-10/metabolism , Interleukin-6/metabolism , Isoquinolines/chemistry , Isoquinolines/pharmacology , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/drug effects , Mice , Neurodegenerative Diseases/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Phosphorylation/drug effects , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Wound Healing/drug effects
10.
Int Immunopharmacol ; 80: 106231, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32007708

ABSTRACT

Novel 1,2,3,4-tetrahydroquinoline derivatives with N-alkanoyl, N-benzoyl, or chlorobenzoyl substituents were designed and synthesized to inhibit nuclear factor-kappa B (NF-κB) known to be involved in the regulation of many immune and inflammatory responses. These compounds have been previously reported to inhibit NF-κB transcriptional activity in Raw 267.4 macrophage cells and exhibit cytotoxicities to several human cancer cell lines (Jo et al., ACS Med. Chem. Lett. 7 (2016) 385-390). Accumulating evidence indicated that NF-κB is also involved in neuroinflammation implicated in many neurodegenerative diseases. Thus, the present study investigated effects of 1,2,3,4-tetrahydroquinoline derivatives on LPS-stimulated inflammatory mediators and cell migration using BV2 microglial cells as a model. We found that seven compounds tested in this study inhibited LPS-induced pro-inflammatory mediators including interleukin-6, tumor necrosis factor-α, and nitric oxide in concentration-dependent manners. Among these compounds, ELC-D-2 exhibited the most potent inhibition without showing significant cytotoxicity. We also found that ELC-D-2 attenuated levels of LPS-induced inducible nitric oxide synthase and cyclooxygenase-2. Moreover, ELC-D-2 inhibited nuclear translocation of NF-κB by suppressing inhibitor of kappa Bα phosphorylation. Furthermore, ELC-D-2 inhibited LPS-induced activation of c-Jun N-terminal kinase (JNK), which was associated with suppression of inflammatory mediators and migration of LPS-treated BV2 cells. Collectively, our findings demonstrate that ELC-D-2 inhibits LPS-induced pro-inflammatory mediators and cell migration by suppressing NF-κB translocation and JNK phosphorylation in BV2 microglial cells. These results suggest that ELC-D-2 might have a beneficial impact on various brain disorders in which neuroinflammation involving microglial activation plays a crucial role in the pathogenesis of these diseases.


Subject(s)
Cell Movement/drug effects , Inflammation Mediators/metabolism , MAP Kinase Signaling System/drug effects , Microglia/drug effects , Quinolines/pharmacology , Animals , Cell Line , Cell Movement/immunology , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/immunology , MAP Kinase Signaling System/immunology , Mice , Microglia/immunology , Microglia/metabolism , NF-kappa B/metabolism , Phosphorylation/drug effects , Phosphorylation/immunology , Quinolines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...