Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Oncog ; 29(4): 75-95, 2024.
Article in English | MEDLINE | ID: mdl-38989739

ABSTRACT

We have witnessed in the last decade new milestones in the treatment of various resistant cancers with new immunotherapeutic modalities. These advances have resulted in significant objective durable clinical responses in a subset of cancer patients. These findings strongly suggested that immunotherapy should be considered for the treatment of all subsets of cancer patients. Accordingly, the mechanisms underlying resistance to immunotherapy must be explored and develop new means to target these resistant factors. One of the pivotal resistance mechanisms in the tumor microenvironment (TME) is the high infiltration of tumor-associated macrophages (TAMs) that are highly immunosuppressive and responsible, in large part, of cancer immune evasion. Thus, various approaches have been investigated to target the TAMs to restore the anti-tumor immune response. One approach is to polarize the M2 TAMS to the M1 phenotype that participates in the activation of the anti-tumor response. In this review, we discuss the various and differential properties of the M1 and M2 phenotypes, the molecular signaling pathways that participate in the polarization, and various approaches used to target the polarization of the M2 TAMs into the M1 anti-tumor phenotype. These approaches include inhibitors of histone deacetylases, PI3K inhibitors, STAT3 inhibitors, TLR agonists, and metabolic reprogramming. Clearly, due to the distinct features of various cancers and their heterogeneities, a single approach outlined above might only be effective against some cancers and not others. In addition, targeting by itself may not be efficacious unless used in combination with other therapeutic modalities.


Subject(s)
Immunotherapy , Neoplasms , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Neoplasms/therapy , Neoplasms/immunology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor Microenvironment/immunology , Animals , Signal Transduction
2.
Cancers (Basel) ; 16(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38539569

ABSTRACT

During the last decade, we have witnessed several milestones in the treatment of various resistant cancers including immunotherapeutic strategies that have proven to be superior to conventional treatment options, such as chemotherapy and radiation. This approach utilizes the host's immune response, which is triggered by cancer cells expressing tumor-associated antigens or neoantigens. The responsive immune cytotoxic CD8+ T cells specifically target and kill tumor cells, leading to tumor regression and prolongation of survival in some cancers; however, some cancers may exhibit resistance due to the inactivation of anti-tumor CD8+ T cells. One mechanism by which the anti-tumor CD8+ T cells become dysfunctional is through the activation of the inhibitory receptor programmed death-1 (PD-1) by the corresponding tumor cells (or other cells in the tumor microenvironment (TME)) that express the programmed death ligand-1 (PD-L1). Hence, blocking the PD-1/PD-L1 interaction via specific monoclonal antibodies (mAbs) restores the CD8+ T cells' functions, leading to tumor regression. Accordingly, the Food and Drug Administration (FDA) has approved several checkpoint antibodies which act as immune checkpoint inhibitors. Their clinical use in various resistant cancers, such as metastatic melanoma and non-small-cell lung cancer (NSCLC), has shown significant clinical responses. We have investigated an alternative approach to prevent the expression of PD-L1 on tumor cells, through targeting the oncogenic transcription factor Yin Yang 1 (YY1), a known factor overexpressed in many cancers. We report the regulation of PD-L1 by YY1 at the transcriptional, post-transcriptional, and post-translational levels, resulting in the restoration of CD8+ T cells' anti-tumor functions. We have performed bioinformatic analyses to further explore the relationship between both YY1 and PD-L1 in cancer and to corroborate these findings. In addition to its regulation of PD-L1, YY1 has several other anti-cancer activities, such as the regulation of proliferation and cell viability, invasion, epithelial-mesenchymal transition (EMT), metastasis, and chemo-immuno-resistance. Thus, targeting YY1 will have a multitude of anti-tumor activities resulting in a significant obliteration of cancer oncogenic activities. Various strategies are proposed to selectively target YY1 in human cancers and present a promising novel therapeutic approach for treating unresponsive cancer phenotypes. These findings underscore the distinct regulatory roles of YY1 and PD-L1 (CD274) in cancer progression and therapeutic response.

3.
Cancers (Basel) ; 15(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686541

ABSTRACT

Cancer is a leading cause of death among the various diseases encountered in humans. Cancer is not a single entity and consists of numerous different types and subtypes that require various treatment regimens. In the last decade, several milestones in cancer treatments were accomplished, such as specific targeting agents or revitalizing the dormant anti-tumor immune response. These milestones have resulted in significant positive clinical responses as well as tumor regression and the prolongation of survival in subsets of cancer patients. Hence, in non-responding patients and non-responding relapsed patients, cancers develop intrinsic mechanisms of resistance to cell death via the overexpression of anti-apoptotic gene products. In parallel, the majority of resistant cancers have been reported to overexpress a transcription factor, Yin Yang 1 (YY1), which regulates the chemo-immuno-resistance of cancer cells to therapeutic anticancer cytotoxic agents. The relationship between the overexpression of YY1 and several anti-apoptotic gene products, such as B-cell lymphoma 2 protein (Bcl-2), B-cell lymphoma extra-large (Bcl-xL), myeloid cell leukemia 1 (Mcl-1) and survivin, is investigated in this paper. The findings demonstrate that these anti-apoptotic gene products are regulated, in part, by YY1 at the transcriptional, epigenetic, post-transcriptional and translational levels. While targeting each of the anti-apoptotic gene products individually has been examined and clinically tested for some, this targeting strategy is not effective due to compensation by other overexpressed anti-apoptotic gene products. In contrast, targeting YY1 directly, through small interfering RNAs (siRNAs), gene editing or small molecule inhibitors, can be therapeutically more effective and generalized in YY1-overexpressed resistant cancers.

4.
Antioxid Redox Signal ; 39(13-15): 853-889, 2023 11.
Article in English | MEDLINE | ID: mdl-37466477

ABSTRACT

Significance: Several therapeutic strategies for cancer treatments have been developed with time, and significant milestones have been achieved recently. However, with these novel therapies, not all cancer types respond and in the responding cancer types only a subset is affected. The failure to respond is principally the result that these cancers develop several mechanisms of resistance. Thus, a focus of current research investigations is to unravel the various mechanisms that regulate resistance and identify suitable targets for new therapeutics. Recent Advances: Hence, many human cancer types have been reported to overexpress the inducible nitric oxide synthase (iNOS) and it has been suggested that iNOS/nitric oxide (NO) plays a pivotal role in the regulation of resistance. We have postulated that iNOS overexpression or NO regulates the overexpression of pivotal anti-apoptotic gene products such as B-cell lymphoma 2 (Bcl-2), B-cell lymphoma extra large (Bcl-xL), myeloid cell leukemia-1 (Mcl-1), and survivin. In this report, we describe the various mechanisms, transcriptional, post-transcriptional, and post-translational, by which iNOS/NO regulates the expression of the above anti-apoptotic gene products. Critical Issues: The iNOS/NO-mediated regulation of the four gene products is not the same with both specific and overlapping pathways. Our findings are, in large part, validated by bioinformatic analyses demonstrating, in several cancers, several direct correlations between the expression of iNOS and each of the four examined anti-apoptotic gene products. Future Directions: We have proposed that targeting iNOS may be highly efficient since it will result in the underexpression of multiple anti-apoptotic proteins and shifting the balance toward the proapoptotic gene products and reversal of resistance. Antioxid. Redox Signal. 39, 853-889.


Subject(s)
Neoplasms , Nitric Oxide , Humans , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Up-Regulation , Nitric Oxide/metabolism , Apoptosis , Apoptosis Regulatory Proteins/genetics , RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...