Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 105(1): 221-9, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18539914

ABSTRACT

These studies describe the effect of N,N-diethyl-4-(phenyl-piperidin-4-ylidenemethyl)-benzamide (AR-M100390), a delta-opioid agonist, on the pancreas and its mechanisms for pancreatic toxicity. Rats were treated with 5, 100, and 600 micromol/kg of AR-M100390 for 3 and/or 7 days; another group of rats treated with 600 micromol/kg of compound were allowed to recover for 14 days. AR-M100390 (600 micromol/kg) caused vacuolation in the beta-cell of the rat pancreas that was associated with depletion of insulin and hyperglycemia after 7 days of dosing. The loss of insulin by AR-M100390 was due to specific inhibition of rat insulin2 mRNA transcription in vivo. Insulin depletion and hyperglycemia were reversible. The effects of AR-M100390 in rats were reproduced in the rat pancreatic beta-cell line RINm5F, where it inhibited intracellular insulin content and secretion without affecting cell survival. Loss of insulin in vitro was also a result of specific inhibition of insulin2 mRNA transcription and was reversible. Pretreatment of cells with the delta-opioid antagonist naltrindole or pertussis toxin did not reverse loss of insulin in AR-M100390-treated cells suggesting that the effects were not mediated by the delta-opioid receptor. AR-M100390 inhibited KCl-mediated calcium mobilization in RINm5F cells, suggesting that L-type calcium channels found in these cells and in pancreatic beta-cells may partially play a role in the inhibition of insulin secretion by this compound. In summary, the in vitro and in vivo studies suggest that inhibition of insulin by AR-M100390 is due to a combination of inhibition of insulin synthesis and/or release.


Subject(s)
Benzamides/toxicity , Insulin/metabolism , Pancreas/drug effects , Piperidines/toxicity , Receptors, Opioid, delta/agonists , Animals , Blood Glucose/analysis , Calcium/metabolism , Calcium Channels, L-Type/physiology , Cells, Cultured , Cyclizine/toxicity , Dose-Response Relationship, Drug , Insulin/genetics , Pancreas/metabolism , RNA, Messenger/analysis , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...