Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 286(51): 43951-43958, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22020937

ABSTRACT

Eukaryotic elongation factor-2 kinase (eEF2K) relays growth and stress signals to protein synthesis through phosphorylation and inactivation of eukaryotic elongation factor 2 (eEF2). 1-Benzyl-3-cetyl-2-methylimidazolium iodide (NH125) is a widely accepted inhibitor of mammalian eEF2K and an efficacious anti-proliferation agent against different cancer cells. It implied that eEF2K could be an efficacious anticancer target. However, eEF2K siRNA was ineffective against cancer cells including those sensitive to NH125. To test if pharmacological intervention differs from siRNA interference, we identified a highly selective small molecule eEF2K inhibitor A-484954. Like siRNA, A-484954 had little effect on cancer cell growth. We carefully examined the effect of NH125 and A-484954 on phosphorylation of eEF2, the known cellular substrate of eEF2K. Surprisingly, NH125 increased eEF2 phosphorylation, whereas A-484954 inhibited the phosphorylation as expected for an eEF2K inhibitor. Both A-484954 and eEF2K siRNA inhibited eEF2K and reduced eEF2 phosphorylation with little effect on cancer cell growth. These data demonstrated clearly that the anticancer activity of NH125 was more correlated with induction of eEF2 phosphorylation than inhibition of eEF2K. Actually, induction of eEF2 phosphorylation was reported to correlate with inhibition of cancer cell growth. We compared several known inducers of eEF2 phosphorylation including AMPK activators and an mTOR inhibitor. Interestingly, stronger induction of eEF2 phosphorylation correlated with more effective growth inhibition. We also explored signal transduction pathways leading to NH125-induced eEF2 phosphorylation. Preliminary data suggested that NH125-induced eEF2 phosphorylation was likely mediated through multiple pathways. These observations identified an opportunity for a new multipathway approach to anticancer therapies.


Subject(s)
Gene Expression Regulation, Neoplastic , Imidazoles/pharmacology , Peptide Elongation Factor 2/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Drug Design , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Phosphorylation , RNA, Small Interfering/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , eIF-2 Kinase/metabolism
2.
Bioorg Med Chem Lett ; 17(23): 6593-601, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-17935989

ABSTRACT

A new series of potent macrocyclic urea-based Chk1 inhibitors are described. A detailed SAR study on the 4-position of the phenyl ring of the 14-member macrocyclic ureas 1a and d led to the identification of the potent Chk1 inhibitors 2, 5-7, 10, 13, 14, 19-21, 25, 27, and 31-34. These compounds significantly sensitize tumor cells to the DNA-damaging antitumor agent doxorubicin in a cell-based assay and efficiently abrogate the doxorubicin-induced G2/M and camptothecin-induced S checkpoints, indicating that the potent biological activities of these compounds are mechanism-based through Chk1 inhibition. Kinome profiling analysis of a representative macrocyclic urea 25 against a panel of 120 kinases indicates that these novel macrocyclic ureas are highly selective Chk1 inhibitors. Preliminary PK studies of 1a and b suggest that the 14-member macrocyclic inhibitors may possess better PK properties than their 15-member counterparts. An improved synthesis of 2 and 20 by using 2-(trimethylsilyl)ethoxycarbonyl (Teoc) to protect the amino group not only readily provided the desired compounds in pure form but also facilitated the scale up of potent compounds for various biological studies.


Subject(s)
Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/pharmacokinetics , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinases , Urea/chemical synthesis , Urea/pharmacokinetics , Animals , Catalysis , Checkpoint Kinase 1 , HeLa Cells , Humans , Macrocyclic Compounds/pharmacology , Mice , Protein Kinase Inhibitors/pharmacology , Protein Kinases/pharmacokinetics , Protein Kinases/physiology , Structure-Activity Relationship , Urea/pharmacology
3.
Bioorg Med Chem Lett ; 17(20): 5665-70, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17768051

ABSTRACT

A series of 1,4-dihydroindeno[1,2-c]pyrazole compounds with a cyanopyridine moiety at the 3-position of the tricyclic pyrazole core was explored as potent CHK-1 inhibitors. The impact of substitutions at the 6 and/or 7-position of the core on pharmacokinetic properties was studied in detail. Compounds carrying a side chain with an ether linker at the 7-position and a terminal morpholino group, such as 29 and 30, exhibited much-improved oral biovailability in mice as compared to earlier generation inhibitors. These compounds also possessed desirable cellular activity in potentiating doxorubicin and will serve as valuable tool compounds for in vivo evaluation of CHK-1 inhibitors to sensitize DNA-damaging agents.


Subject(s)
Hydrogen/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyridines/chemistry , Administration, Oral , Animals , Checkpoint Kinase 1 , Cyanides/chemistry , Indenes/chemistry , Inhibitory Concentration 50 , Mice , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemical synthesis , Pyrazoles/administration & dosage , Pyrazoles/chemical synthesis , Rats , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 17(21): 5944-51, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17827013

ABSTRACT

An extensive structure-activity relationship study of the 3-position of a series of tricyclic pyrazole-based Chk1 inhibitors is described. As a result, 4'-(1,4-dihydro-indeno[1,2-c]pyrazol-3-yl)-benzonitriles (4) and 4'-(1,4-dihydro-indeno[1,2-c]pyrazol-3-yl)-pyridine-2'-carbonitriles (29) emerged as new lead series. Compared with the original lead compound 2, these new leads fully retain the biological activity in both enzymatic inhibition and cell-based assays. More importantly, the new leads 4 and 29 exhibit favorable physicochemical properties such as lower molecular weight, lower Clog P, and the absence of a hydroxyl group. Furthermore, structure-activity relationship studies were performed at the 6- and 7-positions of 4, which led to the identification of ideal Chk1 inhibitors 49, 50, 51, and 55. These compounds not only potently inhibit Chk1 in an enzymatic assay but also significantly potentiate the cytotoxicity of DNA-damaging agents in cell-based assays while they show little single agent activity. A cell cycle analysis by FACS confirmed that these Chk1 inhibitors efficiently abrogate the G2/M and S checkpoints induced by DNA-damaging agent. The current work paved the way to the identification of several potent Chk1 inhibitors with good pharmacokinetics that are suitable for in vivo study with oral dosing.


Subject(s)
Nitriles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinases/drug effects , Checkpoint Kinase 1 , Nitriles/chemistry , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
5.
J Med Chem ; 50(17): 4162-76, 2007 Aug 23.
Article in English | MEDLINE | ID: mdl-17658776

ABSTRACT

A novel series of 5,10-dihydro-dibenzo[b,e][1,4]diazepin-11-ones have been synthesized as potent and selective checkpoint kinase 1 (Chk1) inhibitors via structure-based design. Aided by protein X-ray crystallography, medicinal chemistry efforts led to the identification of compound 46d, with potent enzymatic activity against Chk1 kinase. While maintaining a low cytotoxicity of its own, compound 46d exhibited a strong ability to abrogate G2 arrest and increased the cytotoxicity of camptothecin by 19-fold against SW620 cells. Pharmacokinetic studies revealed that it had a moderate bioavailabilty of 20% in mice. Two important binding interactions between compound 46b and Chk1 kinase, revealed by X-ray cocrystal structure, were hydrogen bonds between the hinge region and the amide bond of the core structure and a hydrogen bond between the methoxy group and Lys38 of the protein.


Subject(s)
Antineoplastic Agents/chemical synthesis , Azepines/chemical synthesis , Benzodiazepinones/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Protein Kinases/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Azepines/chemistry , Azepines/pharmacology , Benzodiazepinones/chemistry , Benzodiazepinones/pharmacology , Biological Availability , Camptothecin/pharmacology , Cell Line, Tumor , Checkpoint Kinase 1 , Crystallography, X-Ray , Doxorubicin/pharmacology , Drug Design , Drug Synergism , Humans , Mice , Models, Molecular , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/chemistry , Structure-Activity Relationship
6.
J Med Chem ; 50(7): 1514-27, 2007 Apr 05.
Article in English | MEDLINE | ID: mdl-17352464

ABSTRACT

Based on the crystallographic analysis of a urea-checkpoint kinase 1 (Chk1) complex and molecular modeling, a class of macrocyclic Chk1 inhibitors were designed and their biological activities were evaluated. An efficient synthetic methodology for macrocyclic ureas was developed with Grubbs metathesis macrocyclization as the key step. The structure-activity relationship studies demonstrated that the macrocyclization retains full Chk1 inhibition activity and that the 4-position of the phenyl ring can tolerate a wide variety of substituents. These novel Chk1 inhibitors exhibit excellent selectivity over a panel of more than 70 kinases. Compounds 5b, 5c, 5f, 15, 16d, 17g, 17h, 17k, 18d, and 22 were identified as ideal Chk1 inhibitors, which showed little or no single-agent activity but significantly potentiate the cytotoxicities of the DNA-damaging antitumor agents doxorubicin and camptothecin. These novel Chk1 inhibitors abrogate the doxorubicin-induced G2 and camptothecin-induced S checkpoint arrests, confirming that their potent biological activities are mechanism-based through Chk1 inhibition.


Subject(s)
Antineoplastic Agents/chemical synthesis , Macrocyclic Compounds/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Protein Kinases/chemistry , Urea/analogs & derivatives , Urea/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Camptothecin/pharmacology , Cell Line, Tumor , Checkpoint Kinase 1 , Crystallography, X-Ray , DNA Damage , Doxorubicin/pharmacology , Drug Design , Drug Screening Assays, Antitumor , Drug Synergism , Humans , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Structure-Activity Relationship , Urea/chemistry , Urea/pharmacology
7.
Antimicrob Agents Chemother ; 47(4): 1456-9, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12654693

ABSTRACT

We have developed a PCR-oligonucleotide ligation assay to rapidly identify base substitutions in topoisomerase genes that are associated with quinolone resistance in clinical isolates of Streptococcus pneumoniae. Thirty-seven strains for which the ciprofloxacin MICs were >/=4 micro g/ml and 16 strains for which the MICs were

Subject(s)
DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Drug Resistance, Bacterial/genetics , Point Mutation , Polymerase Chain Reaction/methods , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...