Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biosci ; 13(1): 147, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563620

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDA) is a pernicious disease characterized by an immunosuppressive milieu that is unresponsive to current immunotherapies. Interleukin-1 receptor antagonist (IL-1Ra) is a natural anti-inflammatory cytokine; however, its contribution to cancer pathogenesis and immunosuppression remains elusive. In this research, we investigated the role and mechanism of IL-1Ra in malignant progression of PDA. RESULTS: Through analyzing clinical dataset and examining the pathological tumor tissues and serum samples, we have demonstrated that IL-1Ra expression is elevated in human PDA and positively associated with malignant progression of PDA. To study the biological function of IL-1Ra in tumors, we generated a set of mouse pancreatic cancer cell lines with a knockout (KO) of the Il1rn gene, encoding IL-1Ra, and compared the tumor growth rates in immune-competent and immune-deficient mice. We found that the Il1rn KO cells exhibited greater tumor inhibition in immune-competent mice, highlighting the crucial role of a functional immune system in Il1rn KO-mediated anti-tumor response. Consistently, we found an increase in CD8+ T cells and a decrease in CD11b+Ly6G- immunosuppressive mononuclear population in the tumor microenvironment of Il1rn KO-derived tumors. To monitor the inhibitory effects of IL-1Ra on immune cells, we utilized a luciferase-based reporter CD4+ T cell line and splenocytes, which were derived from transgenic mice expressing ovalbumin-specific T cell receptors in CD8+ T cells, and mice immunized with ovalbumin. We showed that IL-1Ra suppressed T cell receptor signaling and inhibited antigen-specific interferon-γ (IFN-γ) secretion and cytolytic activity in splenocytes. CONCLUSIONS: Our findings illustrate the immunosuppressive properties of the natural anti-inflammatory cytokine IL-1Ra, and provide a rationale for considering IL-1Ra-targeted therapies in the treatment of PDA.

2.
Cancers (Basel) ; 15(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36672395

ABSTRACT

BACKGROUND: MSCs are known to secrete abundant CCL2, which plays a crucial role in recruiting TAMs, promoting tumor progression. It is important to know whether disrupting MSC-derived CCL2 affects tumor growth. METHODS: Murine bone marrow-derived MSCs were characterized by their surface markers and differentiation abilities. Proliferation and migration assays were performed in order to evaluate the functions of MSCs on cancer cells. CCL2 expression in MSCs was reduced by small interfering RNA (siRNA) or completely disrupted by CRISPR/Cas9 knockout (KO) approaches. An immune-competent syngeneic murine model of prostate cancer was applied in order to assess the role of tumor cell- and MSC-derived CCL2. The tumor microenvironment was analyzed to monitor the immune profile. RESULTS: We confirmed that tumor cell-derived CCL2 was crucial for tumor growth and MSCs migration. CCL2 KO MSCs inhibited the migration of the monocyte/macrophage but not the proliferation of tumor cells in vitro. However, the mice co-injected with tumor cells and CCL2 KO MSCs exhibited anti-tumor effects when compared with those given tumor cell alone and with control MSCs, partly due to increased infiltration of CD45+CD11b+Ly6G- mononuclear myeloid cells. CONCLUSIONS: Disruption of MSC-derived CCL2 enhances anti-tumor functions in an immune-competent syngeneic mouse model for prostate cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...