Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 21(3): 1598-1605, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33404423

ABSTRACT

Ag/SiO2 colloidal nanocomposites (NCs) were prepared through the semi-continuous chemical reduction of silver ions on a silica surface; NaBH4 was used as a primary reducing agent, while carboxymethyl cellulose (CMC) served as a secondary reductant and a stabilizer at low temperature. Silver nanoparticles (AgNPs) of an average diameter of 3.89±0.18 nm were uniformly and densely dispersed on the SiO2 surface, forming 218.6-nm-sized Ag/SiO2 NCs. The zeta potential of the Ag/SiO2 NCs (-92.6 mV) was more negative than that of silica (-24 mV), indicating their high long-term stability. Furthermore, their proposed formation mechanism was confirmed via Fourier transform infrared spectroscopy. Then, the bactericidal effect of the Ag/SiO2 was evaluated based on their minimal inhibitory concentration (MIC) against Ralstonia solanacearum 15 (R. solanacearum 15); it was 62.5 ppm, much lower than that of conventional AgNPs (500 ppm). Therefore, these highly stable Ag/SiO2 colloidal NCs with more effective antibacterial activity than conventional AgNPs are a promising nanopesticide in agriculture.


Subject(s)
Metal Nanoparticles , Nanocomposites , Ralstonia solanacearum , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Particle Size , Silicon Dioxide/pharmacology , Silver/pharmacology , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...