Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Infect Dis ; 30(5): 991-994, 2024 May.
Article in English | MEDLINE | ID: mdl-38666642

ABSTRACT

African swine fever virus (ASFV) genotype II is endemic to Vietnam. We detected recombinant ASFV genotypes I and II (rASFV I/II) strains in domestic pigs from 6 northern provinces in Vietnam. The introduction of rASFV I/II strains could complicate ongoing ASFV control measures in the region.


Subject(s)
African Swine Fever Virus , African Swine Fever , Genotype , Phylogeny , Animals , African Swine Fever Virus/genetics , African Swine Fever Virus/classification , Vietnam/epidemiology , African Swine Fever/epidemiology , African Swine Fever/virology , Swine , Sus scrofa/virology , Recombination, Genetic
2.
Pathogens ; 12(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36986314

ABSTRACT

African swine fever (ASF) is currently Vietnam's most economically significant swine disease. The first ASF outbreak in Vietnam was reported in February 2019. In this study, VNUA/HY/ASF1 strain isolated from the first ASF outbreak was used to infect 10 eight-week-old pigs orally with 103 HAD50 per animal. The pigs were observed daily for clinical signs, and whole blood samples were collected from each animal for viremia detection. Dead pigs were subjected to full post-mortem analyses. All 10 pigs displayed acute or subacute clinical signs and succumbed to the infection between 10 to 27 (19.8 ± 4.66) days post-inoculation (dpi). The onset of clinical signs started around 4-14 dpi. Viremia was observed in pigs from 6-16 dpi (11.2 ± 3.55). Enlarged, hyperemic, and hemorrhagic lymph nodes, enlarged spleen, pneumonia, and hydropericardium were observed at post-mortem examinations.

3.
J Interferon Cytokine Res ; 39(5): 274-282, 2019 05.
Article in English | MEDLINE | ID: mdl-30939061

ABSTRACT

Type I/III interferons provide powerful and universal innate intracellular defense mechanisms against viruses. Among the antiviral effectors induced, Mx proteins of some species appear as key components of defense against influenza A viruses. It is expected that such an antiviral protein must display a platform dedicated to the recognition of said viruses. In an attempt to identify such platform in human MxA, an evolution-guided approach capitalizing on the antagonistic arms race between MxA and its viral targets and the genomic signature it left on primate genomes revealed that the surface-exposed so-called "loop L4", which protrudes from the compact structure of the MxA stalk, is a hotspot of recurrent positive selection. Since MxA is archetypic of Mx1 proteins in general, we reasoned that the L4 loop also functions as a recognition platform for influenza viruses in the Mx1 proteins of other species that had been exposed to the virus for ever. In this study, the anti-influenza activity of 5 distinct mammalian Mx1 proteins was measured by comparing the number of viral nucleoprotein-positive cells 7 h after infection in a sample of 100,000 cells expected to contain both Mx1-positive and Mx1-negative cell subpopulations. The systematic depletion (P < 0.001) of virus nucleoprotein-positive cells among equine, bubaline, porcine, and bovine Mx1-expressing cell populations compared with Mx-negative cells suggests a strong anti-influenza A activity. Looking for common anti-influenza signature elements in the sequence of these Mx proteins, we found that an aromatic residue at positions 561 or 562 in the L4 loop seems critical for the anti-influenza function and/or specificity of mammalian Mx1.


Subject(s)
Influenza A virus/immunology , Interferon Type I/immunology , Interferons/immunology , Myxovirus Resistance Proteins/metabolism , Animals , Buffaloes , Cattle , Dogs , HEK293 Cells , Horses , Humans , Swine , Interferon Lambda
SELECTION OF CITATIONS
SEARCH DETAIL
...