Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 233: 119802, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36871379

ABSTRACT

20 years since the first report on the biofouling potential of chemicals used for scale control, still, antiscalants with high bacterial growth potential are used in practice. Evaluating the bacterial growth potential of commercially available antiscalants is therefore essential for a rational selection of these chemicals. Previous antiscalant growth potential tests were conducted in drinking water or seawater inoculated with model bacterial species which do not represent natural bacterial communities. To reflect better on the conditions of desalination systems, we investigated the bacterial growth potential of eight different antiscalants in natural seawater and an autochthonous bacterial population as inoculum. The antiscalants differed strongly in their bacterial growth potential varying from ≤ 1 to 6 µg easily biodegradable C equivalents/mg antiscalant. The six phosphonate-based antiscalants investigated showed a broad range of growth potential, which depended on their chemical composition, whilst the biopolymer and the synthetic carboxylated polymers-based antiscalants showed limited or no significant bacterial growth. Moreover, nuclear magnetic resonance (NMR) scans enabled antiscalant fingerprinting, identifying components and contaminants, providing a rapid and sensitive characterization, and opening opportunities for rational selection of antiscalants for biofouling control.


Subject(s)
Biofouling , Water Purification , Seawater/chemistry , Osmosis , Membranes, Artificial
2.
Membranes (Basel) ; 12(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36005707

ABSTRACT

The shortage of fresh water resources has made the desalination of seawater a widely adopted technology. Seawater reverse osmosis (SWRO) is the most commonly used method for desalination. The SWRO process is energy-intensive, and most of the energy in SWRO is spent on pressurizing the seawater to overcome the osmotic barrier for producing fresh water. The pressure needed depends on the salinity of the seawater, its temperature, and the membrane surface properties. Membrane compaction occurs in SWRO due to hydraulic pressure application for long-term operations and operating temperature fluctuations due to seasonal seawater changes. This study investigates the effects of short-term feed water temperature increase on the SWRO process in a full-scale pilot with pretreatment and a SWRO installation consisting of a pressure vessel which contains seven industrial-scale 8" diameter spiral wound membrane elements. A SWRO feed water temperature of 40 °C, even for a short period of 7 days, caused a permanent performance decline illustrated by a strong specific energy consumption increase of 7.5%. This study highlights the need for membrane manufacturer data that account for the water temperature effect on membrane performance over a broad temperature range. There is a need to develop new membranes that are more tolerant to temperature fluctuations.

SELECTION OF CITATIONS
SEARCH DETAIL
...