Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Leukemia ; 30(9): 1832-43, 2016 09.
Article in English | MEDLINE | ID: mdl-27174491

ABSTRACT

We identified mutations in the IL7Ra gene or in genes encoding the downstream signaling molecules JAK1, JAK3, STAT5B, N-RAS, K-RAS, NF1, AKT and PTEN in 49% of patients with pediatric T-cell acute lymphoblastic leukemia (T-ALL). Strikingly, these mutations (except RAS/NF1) were mutually exclusive, suggesting that they each cause the aberrant activation of a common downstream target. Expressing these mutant signaling molecules-but not their wild-type counterparts-rendered Ba/F3 cells independent of IL3 by activating the RAS-MEK-ERK and PI3K-AKT pathways. Interestingly, cells expressing either IL7Ra or JAK mutants are sensitive to JAK inhibitors, but respond less robustly to inhibitors of the downstream RAS-MEK-ERK and PI3K-AKT-mTOR pathways, indicating that inhibiting only one downstream pathway is not sufficient. Here, we show that inhibiting both the MEK and PI3K-AKT pathways synergistically prevents the proliferation of BaF3 cells expressing mutant IL7Ra, JAK and RAS. Furthermore, combined inhibition of MEK and PI3K/AKT was cytotoxic to samples obtained from 6 out of 11 primary T-ALL patients, including 1 patient who had no mutations in the IL7R signaling pathway. Taken together, these results suggest that the potent cytotoxic effects of inhibiting both MEK and PI3K/AKT should be investigated further as a therapeutic option using leukemia xenograft models.


Subject(s)
Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Receptors, Interleukin-7/metabolism , Signal Transduction/drug effects , Animals , Cell Proliferation/drug effects , Humans , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Kinase Inhibitors/pharmacology , Receptors, Interleukin-7/antagonists & inhibitors , Transfection , Tumor Cells, Cultured
2.
Leukemia ; 24(12): 2014-22, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20861909

ABSTRACT

Aberrant activation of the NOTCH1 pathway by inactivating and activating mutations in NOTCH1 or FBXW7 is a frequent phenomenon in T-cell acute lymphoblastic leukemia (T-ALL). We retrospectively investigated the relevance of NOTCH1/FBXW7 mutations for pediatric T-ALL patients enrolled on Dutch Childhood Oncology Group (DCOG) ALL7/8 or ALL9 or the German Co-Operative Study Group for Childhood Acute Lymphoblastic Leukemia study (COALL-97) protocols. NOTCH1-activating mutations were identified in 63% of patients. NOTCH1 mutations affected the heterodimerization, the juxtamembrane and/or the PEST domains, but not the RBP-J-κ-associated module, the ankyrin repeats or the transactivation domain. Reverse-phase protein microarray data confirmed that NOTCH1 and FBXW7 mutations resulted in increased intracellular NOTCH1 levels in primary T-ALL biopsies. Based on microarray expression analysis, NOTCH1/FBXW7 mutations were associated with activation of NOTCH1 direct target genes including HES1, DTX1, NOTCH3, PTCRA but not cMYC. NOTCH1/FBXW7 mutations were associated with TLX3 rearrangements, but were less frequently identified in TAL1- or LMO2-rearranged cases. NOTCH1-activating mutations were less frequently associated with mature T-cell developmental stage. Mutations were associated with a good initial in vivo prednisone response, but were not associated with a superior outcome in the DCOG and COALL cohorts. Comparing our data with other studies, we conclude that the prognostic significance for NOTCH1/FBXW7 mutations is not consistent and may depend on the treatment protocol given.


Subject(s)
Cell Cycle Proteins/genetics , F-Box Proteins/genetics , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prednisone/therapeutic use , Receptor, Notch1/genetics , Ubiquitin-Protein Ligases/genetics , Child , F-Box-WD Repeat-Containing Protein 7 , Female , Gene Rearrangement , Homeodomain Proteins/genetics , Humans , Male , Treatment Outcome
3.
Leukemia ; 22(1): 124-31, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17928886

ABSTRACT

Pediatric T-cell acute lymphoblastic leukemia (T-ALL) is characterized by chromosomal rearrangements possibly enforcing arrest at specific development stages. We studied the relationship between molecular-cytogenetic abnormalities and T-cell development stage to investigate whether arrest at specific stages can explain the prognostic significance of specific abnormalities. We extensively studied 72 pediatric T-ALL cases for genetic abnormalities and expression of transcription factors, NOTCH1 mutations and expression of specific CD markers. HOX11 cases were CD1 positive consistent with a cortical stage, but as 4/5 cases lacked cytoplasmatic-beta expression, developmental arrest may precede beta-selection. HOX11L2 was especially confined to immature and pre-AB developmental stages, but 3/17 HOX11L2 mature cases were restricted to the gammadelta-lineage. TAL1 rearrangements were restricted to the alphabeta-lineage with most cases being TCR-alphabeta positive. NOTCH1 mutations were present in all molecular-cytogenetic subgroups without restriction to a specific developmental stage. CALM-AF10 was associated with early relapse. TAL1 or HOX11L2 rearrangements were associated with trends to good and poor outcomes, respectively. Also cases with high vs low TAL1 expression levels demonstrated a trend toward good outcome. Most cases with lower TAL1 levels were HOX11L2 or CALM-AF10 positive. NOTCH1 mutations did not predict for outcome. Classification into T-cell developmental subgroups was not predictive for outcome.


Subject(s)
Gene Rearrangement/genetics , Leukemia-Lymphoma, Adult T-Cell/genetics , Neoplasm Recurrence, Local/genetics , Receptor, Notch1/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Lineage , Child , Female , Homeodomain Proteins/genetics , Humans , Immunophenotyping , In Situ Hybridization, Fluorescence , Leukemia-Lymphoma, Adult T-Cell/diagnosis , Leukemia-Lymphoma, Adult T-Cell/metabolism , Male , Mutation/genetics , Oncogene Proteins, Fusion/genetics , Prognosis , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , RNA, Neoplasm/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , Reverse Transcriptase Polymerase Chain Reaction , T-Cell Acute Lymphocytic Leukemia Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...