Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 59(23): 10479-10497, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27933955

ABSTRACT

Cyclic nucleotide cAMP is a ubiquitous secondary messenger involved in a plethora of cellular responses to biological agents involving activation of adenylyl cyclase. Its intracellular levels are tightly controlled by a family of cyclic nucleotide degrading enzymes, the PDEs. In recent years, cyclic nucleotide phosphodiesterase type 4 (PDE4) has aroused scientific attention as a suitable target for anti-inflammatory therapy in respiratory diseases, particularly in the management of asthma and COPD. Here we describe our efforts to discover novel, highly potent inhaled inhibitors of PDE4. Through structure based design, with the inclusion of a variety of functional groups and physicochemical profiles in order to occupy the solvent-filled pocket of the PDE4 enzyme, we modified the structure of our oral PDE4 inhibitors to reach compounds down to picomolar enzymatic potencies while at the same time tackling successfully an uncovered selectivity issue with the adenosine receptors. In vitro potencies were demonstrated in a rat lung neutrophilia model by administration of a suspension with a Penn-Century MicroSprayer Aerosolizer.


Subject(s)
Biphenyl Compounds/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Pyridazines/pharmacology , Animals , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/chemistry , Dose-Response Relationship, Drug , Humans , Male , Models, Molecular , Molecular Structure , Phosphodiesterase 4 Inhibitors/chemical synthesis , Phosphodiesterase 4 Inhibitors/chemistry , Pyridazines/chemical synthesis , Pyridazines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
2.
Eur J Med Chem ; 113: 102-33, 2016 May 04.
Article in English | MEDLINE | ID: mdl-26922232

ABSTRACT

Monocyclic and bicyclic ring systems were investigated as the "core" section of a series of diphenylsulphone-containing acetic acid CRTh2 receptor antagonists. A range of potencies were observed and single-digit nanomolar potencies were obtained in both the monocyclic and bicyclic cores. Residence times for the monocyclic compounds were very short. Some of the bicyclic cores displayed better residence times. A methyl group in the northern part of the core, between the head and tail was a necessary requirement for the beginnings of long residence times. Variations of the tail substitution maximised potencies and residence times.


Subject(s)
Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Sulfones/chemistry , Sulfones/pharmacology , Dose-Response Relationship, Drug , Humans , Kinetics , Molecular Structure , Structure-Activity Relationship , Sulfones/chemical synthesis
3.
Bioorg Med Chem Lett ; 25(8): 1736-1741, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25800115
5.
Bioorg Med Chem Lett ; 24(21): 5111-7, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25437503

ABSTRACT

Pyrrolopiperidinone acetic acids (PPAs) were identified as highly potent CRTh2 receptor antagonists. In addition, many of these compounds displayed slow-dissociation kinetics from the receptor. Structure-kinetic relationship (SKR) studies allowed optimisation of the kinetics to give potent analogues with long receptor residence half-lives of up to 23 h. Low permeability was a general feature of this series, however oral bioavailability could be achieved through the use of ester prodrugs.


Subject(s)
Acetates/chemistry , Acetates/pharmacology , Piperidines/chemistry , Pyrazoles/chemistry , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Acetates/chemical synthesis , Acetates/pharmacokinetics , Administration, Oral , Animals , Caco-2 Cells , Cell Membrane Permeability/drug effects , Half-Life , Humans , Rats , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Structure-Activity Relationship
7.
Eur J Med Chem ; 71: 168-84, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24292338

ABSTRACT

In this manuscript, the synthesis and biological activity of a series of pyrazole acetic acid derivatives as CRTh2 antagonists is presented. Biological evaluation in vitro revealed that the pyrazole core showed in several cases a different structure-activity relationship (SAR) to that of related indole acetic acid. A potent series of ortho-sulfonyl benzyl substituents was found, from which compounds 27 and 63 were advanced to in vivo profiling.


Subject(s)
Acetates/chemistry , Acetates/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Acetates/chemical synthesis , Humans , Pyrazoles/chemical synthesis , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 21(11): 3457-61, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21524581

ABSTRACT

Novel quaternary ammonium derivatives of N,N-disubstituted (3R)-quinuclidinyl carbamates have been identified as potent M(3) muscarinic antagonists with long duration of action in an in vivo model of bronchoconstriction. These compounds have also presented a high level of metabolic transformation (human liver microsomes). The synthesis, structure-activity relationships and biological evaluation of these compounds are reported.


Subject(s)
Carbamates/chemical synthesis , Carbamates/pharmacology , Drug Discovery , Microsomes, Liver/drug effects , Muscarinic Antagonists/chemical synthesis , Muscarinic Antagonists/pharmacology , Carbamates/chemistry , Humans , Inhibitory Concentration 50 , Microsomes, Liver/metabolism , Molecular Structure , Muscarinic Antagonists/chemistry , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Quinuclidines/chemical synthesis , Quinuclidines/chemistry , Quinuclidines/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...