Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Sci ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39156925

ABSTRACT

Herein, we present a new computational methodology that unlocks the prediction of the complex multi-species multi-equilibria processes involved in the formation of complex metal-oxo nanoclusters. Relying on our recently introduced method named POMSimulator, we extended its capabilities and challenged its accuracy with the well-known phosphomolybdate [PMo12O40]3- Keggin anion system. We show how the use of statistical techniques enabled the processing of a vast number of speciation models and their associated systems of non-linear equations efficiently and in a scalable manner. Subsequently, this approach is applied to generate statistically averaged speciation diagrams and their associated error bars. Then, we unveil the previously unreported speciation phase diagram under varying [Mo]/[P] ratios vs. pH. Our findings align well with experimental data, indicating the prevalence of the Keggin {PMo12} as the primary species at low pH, but the lacunary {PMo11}and Strandberg {P2Mo5} anions also emerge as major species at other concentration ratios. Finally, from 7 × 104 speciation models we inferred a plausible reaction network across the diverse nuclearities present within the system, which underlines the role of trimers as key intermediate building blocks.

2.
J Comput Chem ; 45(26): 2242-2250, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38826122

ABSTRACT

Elucidating the speciation (in terms of concentration versus pH) and understanding the formation mechanisms of polyoxometalates remains a significant challenge, both in experimental and computational domains. POMSimulator is a new methodology that tackles this problem from a purely computational perspective. The methodology uses results from quantum mechanics based methods to automatically set up the chemical reaction network, and to build speciation models. As a result, it becomes possible to predict speciation and phase diagrams, as well as to derive new insights into the formation mechanisms of large molecular clusters. In this work we present the main features of the first open-source version of the software. Since the first report [Chem. Sci. 2020, 11, 8448-8456], POMSimulator has undergone several improvements to keep up with the growing challenges that were tackled. After four years of research, we recognize that the source code is sufficiently stable to share a polished and user-friendly version. The Python code, manual, examples, and install instructions can be found at https://github.com/petrusen/pomsimulator.

3.
J Inorg Biochem ; 245: 112258, 2023 08.
Article in English | MEDLINE | ID: mdl-37244168

ABSTRACT

This paper deals with the synthesis, characterization, and studies of biological properties of a series of 5 coordination compounds based on binuclear core [Mo(V)2O2S2]2+ with thiosemicarbazones ligands bearing different substituents on the R1 position of the ligand. The complexes are first studied using MALDI-TOF mass spectrometry and NMR spectroscopy to determine their structures in solution in relation to single-crystal X-Ray diffraction data. In a second part, the antifungal and antioxidative activities are explored and the high potential of these coordination compounds compared to the uncoordinated ligands is demonstrated for these properties. Finally, DFT calculation provides important support to the solution studies by identifying the most stable isomers in each [Mo2O2S2]2+/Ligand system, while the determination of HUMO and LUMO levels is performed to explain the antioxidative properties of these systems.


Subject(s)
Coordination Complexes , Thiosemicarbazones , Thiosemicarbazones/chemistry , Antifungal Agents/pharmacology , Antioxidants/pharmacology , Ligands , Magnetic Resonance Spectroscopy , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Crystallography, X-Ray
4.
Chemphyschem ; 23(8): e202200010, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35191571

ABSTRACT

Long range substituent effects in regium bonding interactions involving Au(I) linear complexes are investigated for the first time. The Au(I) atom is coordinated to two para-substituted pyridine ligands. The interaction energy (RI-MP2/def2-TZVP level of theory) of the π-hole regium bonding assemblies is affected by the pyridine substitution. The Hammett's plot representations for several sets of Lewis bases have been carried out and, in all cases, good regression plots have been obtained (interaction energies vs. Hammett's σ parameter). The Bader's theory of "atoms-in-molecules" has been used to evidence that the electron density computed at the bond critical point that connects the Au-atom to the electron donor can be used as a measure of bond order in regium bonding. Several X-ray structures retrieved from the Cambridge Structural Database (CSD) provide experimental support to the existence of π-hole regium bonding in [Au(Py)2 ]+ derivatives.


Subject(s)
Lewis Bases , Hydrogen Bonding , Lewis Bases/chemistry
5.
Chem Commun (Camb) ; 56(24): 3524-3527, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32101222

ABSTRACT

Herein we report the synthesis and X-ray characterization of a gold(iii) complex of 1-hexylcytosine via N(3). The AuCl3N complexes stack on top of each other by reciprocal [AuCl] regium bonding interactions. After the first example 35 years ago, this is the second available structure of a cytosine nucleobase model complexed to gold(iii).

SELECTION OF CITATIONS
SEARCH DETAIL