Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
PLoS One ; 18(8): e0288352, 2023.
Article in English | MEDLINE | ID: mdl-37531335

ABSTRACT

BACKGROUND: Hospital health care workers (HCW) are at increased risk of contracting SARS-CoV-2. We investigated whether certain behavioral and physical features, e.g. nose picking and wearing glasses, are associated with infection risk. AIM: To assess the association between nose picking and related behavioral or physical features (nail biting, wearing glasses, and having a beard) and the incidence of SARS-CoV-2-infection. METHODS: In a cohort study among 404 HCW in two university medical centers in the Netherlands, SARS-CoV-2-specific antibodies were prospectively measured during the first phase of the pandemic. For this study HCW received an additional retrospective survey regarding behavioral (e.g. nose picking) and physical features. RESULTS: In total 219 HCW completed the survey (response rate 52%), and 34/219 (15.5%) became SARS-CoV-2 seropositive during follow-up from March 2020 till October 2020. The majority of HCW (185/219, 84.5%) reported picking their nose at least incidentally, with frequency varying between monthly, weekly and daily. SARS-CoV-2 incidence was higher in nose picking HCW compared to participants who refrained from nose picking (32/185: 17.3% vs. 2/34: 5.9%, OR 3.80, 95% CI 1.05 to 24.52), adjusted for exposure to COVID-19. No association was observed between nail biting, wearing glasses, or having a beard, and the incidence of SARS-CoV-2 infection. CONCLUSION: Nose picking among HCW is associated with an increased risk of contracting a SARS-CoV-2 infection. We therefore recommend health care facilities to create more awareness, e.g. by educational sessions or implementing recommendations against nose picking in infection prevention guidelines.


Subject(s)
COVID-19 , Nose , Nose/virology , COVID-19/epidemiology , COVID-19/transmission , Incidence , Cohort Studies , Hospitals , Health Personnel/statistics & numerical data , Humans , Male , Female , Adult , Middle Aged , Nail Biting , Habits , Eyeglasses , Hair
2.
Clin Infect Dis ; 77(8): 1092-1101, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37310693

ABSTRACT

BACKGROUND: Despite being the leading cause of mortality from bloodstream infections worldwide, little is known about regional variation in treatment practices for Staphylococcus aureus bacteremia (SAB). The aim of this study was to identify global variation in management, diagnostics, and definitions of SAB. METHODS: During a 20-day period in 2022, physicians throughout the world were surveyed on SAB treatment practices. The survey was distributed through listservs, e-mails, and social media. RESULTS: In total, 2031 physicians from 71 different countries on 6 continents (North America [701, 35%], Europe [573, 28%], Asia [409, 20%], Oceania [182, 9%], South America [124, 6%], and Africa [42, 2%]) completed the survey. Management-based responses differed significantly by continent for preferred treatment of methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) bacteremia, use of adjunctive rifampin for prosthetic material infection, and use of oral antibiotics (P < .01 for all comparisons). The 18F-FDG PET/CT scans were most commonly used in Europe (94%) and least frequently used in Africa (13%) and North America (51%; P < .01). Although most respondents defined persistent SAB as 3-4 days of positive blood cultures, responses ranged from 2 days in 31% of European respondents to 7 days in 38% of Asian respondents (P < .01). CONCLUSIONS: Large practice variations for SAB exist throughout the world, reflecting the paucity of high-quality data and the absence of an international standard of care for the management of SAB.


Subject(s)
Bacteremia , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus/physiology , Positron Emission Tomography Computed Tomography , Standard of Care , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Bacteremia/diagnosis , Bacteremia/drug therapy , Anti-Bacterial Agents/therapeutic use
3.
Eur Respir J ; 62(1)2023 07.
Article in English | MEDLINE | ID: mdl-37080568

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19)-induced mortality occurs predominantly in older patients. Several immunomodulating therapies seem less beneficial in these patients. The biological substrate behind these observations is unknown. The aim of this study was to obtain insight into the association between ageing, the host response and mortality in patients with COVID-19. METHODS: We determined 43 biomarkers reflective of alterations in four pathophysiological domains: endothelial cell and coagulation activation, inflammation and organ damage, and cytokine and chemokine release. We used mediation analysis to associate ageing-driven alterations in the host response with 30-day mortality. Biomarkers associated with both ageing and mortality were validated in an intensive care unit and external cohort. RESULTS: 464 general ward patients with COVID-19 were stratified according to age decades. Increasing age was an independent risk factor for 30-day mortality. Ageing was associated with alterations in each of the host response domains, characterised by greater activation of the endothelium and coagulation system and stronger elevation of inflammation and organ damage markers, which was independent of an increase in age-related comorbidities. Soluble tumour necrosis factor receptor 1, soluble triggering receptor expressed on myeloid cells 1 and soluble thrombomodulin showed the strongest correlation with ageing and explained part of the ageing-driven increase in 30-day mortality (proportion mediated: 13.0%, 12.9% and 12.6%, respectively). CONCLUSIONS: Ageing is associated with a strong and broad modification of the host response to COVID-19, and specific immune changes likely contribute to increased mortality in older patients. These results may provide insight into potential age-specific immunomodulatory targets in COVID-19.


Subject(s)
COVID-19 , Humans , Aged , Biomarkers , Inflammation , Cytokines , Aging
4.
iScience ; 25(10): 105105, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36101832

ABSTRACT

Antibodies against seasonal human coronaviruses (HCoVs) are known to cross-react with SARS-CoV-2, but data on cross-protective effects of prior HCoV infections are conflicting. In a prospective cohort of healthcare workers (HCWs), we studied the association between seasonal HCoV (OC43, HKU1, 229E and NL63) nucleocapsid protein IgG and SARS-CoV-2 infection during the first pandemic wave in the Netherlands (March 2020 - June 2020), by 4-weekly serum sampling. HCW with HCoV-OC43 antibody levels in the highest quartile, were less likely to become SARS-CoV-2 seropositive when compared with those with lower levels (6/32, 18.8%, versus 42/97, 43.3%, respectively: p = 0.019; HR 0.37, 95% CI 0.16-0.88). We found no significant association with HCoV-OC43 spike protein IgG, or with antibodies against other HCoVs. Our results indicate that the high levels of HCoV-OC43-nucleocapsid antibodies, as an indicator of a recent infection, are associated with protection against SARS-CoV-2 infection; this supports and informs efforts to develop pancoronavirus vaccines.

5.
Microbiol Spectr ; 10(4): e0040522, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35762813

ABSTRACT

Infants may develop severe viral respiratory tract infections because their immune system is still developing in the first months after birth. Human milk provides passive humoral immunity during the first months of life. During the COVID-19 pandemic, circulation of common respiratory viruses was virtually absent due to the preventative measures resulting in reduced maternal exposure. Therefore, we hypothesized that this might result in lower antibody levels in human milk during the pandemic and, subsequently, decreased protection of infants against viral respiratory tract infections. We assessed antibody levels against respiratory syncytial virus (RSV), Influenza virus, and several seasonal coronaviruses in different periods of the COVID-19 pandemic in serum and human milk using a Luminex assay. IgG levels against RSV, Influenza, HCoV-OC43, HCoV-HKU1, and HCoV-NL63 in human milk were reduced with a factor of 1.7 (P < 0.001), 2.2 (P < 0.01), 2.6 (P < 0.05), 1.4 (P < 0.01), and 2.1 (P < 0.001), respectively, since the introduction of the COVID-19 restrictions. Furthermore, we observed that human milk of mothers that experienced COVID-19 contained increased levels of IgG and IgA binding to other respiratory viruses. Passive immunity via human milk against common respiratory viruses was reduced during the COVID-19 pandemic, which may have consequences for the protection of breastfed infants against respiratory infections. IMPORTANCE Passive immunity derived from antibodies in human milk is important for protecting young infants against invading viruses. During the COVID-19 pandemic, circulation of common respiratory viruses was virtually absent due to preventative measures. In this study, we observed a decrease in human milk antibody levels against common respiratory viruses several months into the COVID-19 pandemic. This waning of antibody levels might partially explain the previously observed surge of hospitalizations of infants, mostly due to RSV, when preventative hygiene measures were lifted. Knowledge of the association between preventative measures, antibody levels in human milk and subsequent passive immunity in infants might help predict infant hospital admissions and thereby enables anticipation to prevent capacity issues. Additionally, it is important in the consideration for strategies for future lockdowns to best prevent possible consequences for vulnerable infants.


Subject(s)
COVID-19 , Respiratory Tract Infections , Viruses , Antibodies, Viral , COVID-19/epidemiology , Communicable Disease Control , Female , Humans , Immunoglobulin G , Infant , Milk, Human , Pandemics , Respiratory Syncytial Viruses , Respiratory Tract Infections/epidemiology
6.
Antimicrob Resist Infect Control ; 10(1): 155, 2021 10 30.
Article in English | MEDLINE | ID: mdl-34717761

ABSTRACT

BACKGROUND: We defined the frequency of respiratory community-acquired bacterial co-infection in patients with COVID-19, i.e. patients with a positive SARS-CoV-2 PCR or a COVID-19 Reporting and Data System (CO-RADS) score ≥ 4, based on a complete clinical assessment, including prior antibiotic use, clinical characteristics, inflammatory markers, chest computed tomography (CT) results and microbiological test results. METHODS: Our retrospective study was conducted within a cohort of prospectively included patients admitted for COVID-19 in our tertiary medical centres between 1-3-2020 and 1-6-2020. A multidisciplinary study team developed a diagnostic protocol to retrospectively categorize patients as unlikely, possible or probable bacterial co-infection based on clinical, radiological and microbiological parameters in the first 72 h of admission. Within the three categories, we summarized patient characteristics and antibiotic consumption. RESULTS: Among 281 included COVID-19 patients, bacterial co-infection was classified as unlikely in 233 patients (82.9%), possible in 35 patients (12.4%) and probable in 3 patients (1.1%). Ten patients (3.6%) could not be classified due to inconclusive data. Within 72 h of hospital admission, 81% of the total study population and 78% of patients classified as unlikely bacterial co-infection received antibiotics. CONCLUSIONS: COVID-19 patients are unlikely to have a respiratory community-acquired bacterial co-infection. This study underpins recommendations for restrictive use of antibacterial drugs in patients with COVID-19.


Subject(s)
Bacterial Infections/epidemiology , COVID-19/diagnosis , Coinfection/epidemiology , Community-Acquired Infections/epidemiology , Hospitalization/statistics & numerical data , Pneumonia/epidemiology , Adult , Anti-Bacterial Agents/therapeutic use , Antimicrobial Stewardship , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , COVID-19/complications , Cohort Studies , Coinfection/drug therapy , Community-Acquired Infections/microbiology , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2
8.
JAMA Netw Open ; 4(7): e2118554, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34319354

ABSTRACT

Importance: It is unclear when, where, and by whom health care workers (HCWs) working in hospitals are infected with SARS-CoV-2. Objective: To determine how often and in what manner nosocomial SARS-CoV-2 infection occurs in HCW groups with varying exposure to patients with COVID-19. Design, Setting, and Participants: This cohort study comprised 4 weekly measurements of SARS-CoV-2-specific antibodies and collection of questionnaires from March 23 to June 25, 2020, combined with phylogenetic and epidemiologic transmission analyses at 2 university hospitals in the Netherlands. Included individuals were HCWs working in patient care for those with COVID-19, HCWs working in patient care for those without COVID-19, and HCWs not working in patient care. Data were analyzed from August through December 2020. Exposures: Varying work-related exposure to patients infected with SARS-CoV-2. Main Outcomes and Measures: The cumulative incidence of and time to SARS-CoV-2 infection, defined as the presence of SARS-CoV-2-specific antibodies in blood samples, were measured. Results: Among 801 HCWs, there were 439 HCWs working in patient care for those with COVID-19, 164 HCWs working in patient care for those without COVID-19, and 198 HCWs not working in patient care. There were 580 (72.4%) women, and the median (interquartile range) age was 36 (29-50) years. The incidence of SARS-CoV-2 was increased among HCWs working in patient care for those with COVID-19 (54 HCWs [13.2%; 95% CI, 9.9%-16.4%]) compared with HCWs working in patient care for those without COVID-19 (11 HCWs [6.7%; 95% CI, 2.8%-10.5%]; hazard ratio [HR], 2.25; 95% CI, 1.17-4.30) and HCWs not working in patient care (7 HCWs [3.6%; 95% CI, 0.9%-6.1%]; HR, 3.92; 95% CI, 1.79-8.62). Among HCWs caring for patients with COVID-19, SARS-CoV-2 cumulative incidence was increased among HCWs working on COVID-19 wards (32 of 134 HCWs [25.7%; 95% CI, 17.6%-33.1%]) compared with HCWs working on intensive care units (13 of 186 HCWs [7.1%; 95% CI, 3.3%-10.7%]; HR, 3.64; 95% CI, 1.91-6.94), and HCWs working in emergency departments (7 of 102 HCWs [8.0%; 95% CI, 2.5%-13.1%]; HR, 3.29; 95% CI, 1.52-7.14). Epidemiologic data combined with phylogenetic analyses on COVID-19 wards identified 3 potential HCW-to-HCW transmission clusters. No patient-to-HCW transmission clusters could be identified in transmission analyses. Conclusions and Relevance: This study found that HCWs working on COVID-19 wards were at increased risk for nosocomial SARS-CoV-2 infection with an important role for HCW-to-HCW transmission. These findings suggest that infection among HCWs deserves more consideration in infection prevention practice.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , COVID-19/genetics , Personnel, Hospital , Phylogeny , Population Surveillance , SARS-CoV-2/immunology , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Serological Testing , Cohort Studies , Female , Humans , Incidence , Male , Middle Aged
9.
Diabetes ; 68(4): 787-795, 2019 04.
Article in English | MEDLINE | ID: mdl-30626607

ABSTRACT

The heterozygous DQ2/8 (DQA1*05:01-DQB1*02:01/DQA1*03:01-DQB1*03:02) genotype confers the highest risk in type 1 diabetes (T1D), whereas the DQ6/8 (DQA1*02:01-DQB1*06:02/DQA1*03:01-DQB1*03:02) genotype is protective. The mechanism of dominant protection by DQ6 (DQB1*06:02) is unknown. We tested the hypothesis that DQ6 interferes with peptide binding to DQ8 by competition for islet epitope ("epitope stealing") by analysis of the islet ligandome presented by HLA-DQ6/8 and -DQ8/8 on dendritic cells pulsed with islet autoantigens preproinsulin (PPI), GAD65, and IA-2, followed by competition assays using a newly established "epitope-stealing" HLA/peptide-binding assay. HLA-DQ ligandome analysis revealed a distinct DQ6 peptide-binding motif compared with the susceptible DQ2/8 molecules. PPI and IA-2 peptides were identified from DQ6, of DQ6/8 heterozygous dendritic cells, but no DQ8 islet peptides were retrieved. Insulin B6-23, a highly immunogenic CD4 T-cell epitope in patients with T1D, bound to both DQ6 and DQ8. Yet, binding of InsB6-23 to DQ8 was prevented by DQ6. We obtained first functional evidence of a mechanism of dominant protection from disease, in which HLA molecules associated with protection bind islet epitopes in a different, competing, HLA-binding register, leading to "epitope stealing" and conceivably diverting the immune response from islet epitopes presented by disease-susceptible HLA molecules in the absence of protective HLA.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Epitopes, T-Lymphocyte/immunology , HLA-DQ Antigens/immunology , Cell Line, Tumor , Diabetes Mellitus, Type 1/genetics , HLA-DQ Antigens/genetics , Haplotypes , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...