Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 189(6): 294, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28550516

ABSTRACT

The presence of vegetation in stream ecosystems is highly dynamic in both space and time. A digital photography technique is developed to map aquatic vegetation cover at species level, which has a very high spatial and a flexible temporal resolution. A digital single-lens reflex (DSLR) camera mounted on a handheld telescopic pole is used. The low-altitude (5 m) orthogonal aerial images have a low spectral resolution (red-green-blue), high spatial resolution (∼1.9 pixels cm-2, ∼1.3 cm length) and flexible temporal resolution (monthly). The method is successfully applied in two lowland rivers to quantify four key properties of vegetated rivers: vegetation cover, patch size distribution, biomass and hydraulic resistance. The main advantages are that the method is (i) suitable for continuous and discontinuous vegetation covers, (ii) of very high spatial and flexible temporal resolution, (iii) relatively fast compared to conventional ground survey methods, (iv) non-destructive and (v) relatively cheap and easy to use, and (vi) the software is widely available and similar open source alternatives exist. The study area should be less than 10 m wide, and the prevailing light conditions and water turbidity levels should be sufficient to look into the water. Further improvements of the image processing are expected in the automatic delineation and classification of the vegetation patches.


Subject(s)
Environmental Monitoring/methods , Geographic Mapping , Photography , Plants , Altitude , Biomass , Ecosystem , Rivers , Spatio-Temporal Analysis
2.
Sensors (Basel) ; 15(10): 25287-312, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26437410

ABSTRACT

UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R²-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R²-values up to 0.77) corresponded with the OBRA findings. A 10% error was achieved under sub-optimal data collection conditions, which indicates that the method could be suitable for many SAV mapping applications.


Subject(s)
Altitude , Geographic Information Systems , Plants , Remote Sensing Technology/methods , Water , Aquatic Organisms , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Humans , Remote Sensing Technology/instrumentation , Rivers/chemistry , United Kingdom , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...