Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Mol Psychiatry ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38871852

ABSTRACT

The amyloid cascade hypothesis assumes that the development of Alzheimer's disease (AD) is driven by a self-perpetuating cycle, in which ß-amyloid (Aß) accumulation leads to Tau pathology and neuronal damages. A particular mutation (A673T) of the amyloid precursor protein (APP) was identified among Icelandic population. It provides a protective effect against Alzheimer- and age-related cognitive decline. This APP mutation leads to the reduced production of Aß with A2T (position in peptide sequence) change (Aßice). In addition, Aßice has the capacity to form protective heterodimers in association with wild-type Aß. Despite the emerging interest in Aßice during the last decade, the impact of Aßice on events associated with the amyloid cascade has never been reported. First, the effects of Aßice were evaluated in vitro by electrophysiology on hippocampal slices and by studying synapse morphology in cortical neurons. We showed that Aßice protects against endogenous Aß-mediated synaptotoxicity. Second, as several studies have outlined that a single intracerebral administration of Aß can worsen Aß deposition and cognitive functions several months after the inoculation, we evaluated in vivo the long-term effects of a single inoculation of Aßice or Aß-wild-type (Aßwt) in the hippocampus of transgenic mice (APPswe/PS1dE9) over-expressing Aß1-42 peptide. Interestingly, we found that the single intra-hippocampal inoculation of Aßice to mice rescued synaptic density and spatial memory losses four months post-inoculation, compared with Aßwt inoculation. Although Aß load was not modulated by Aßice infusion, the amount of Tau-positive neuritic plaques was significantly reduced. Finally, a lower phagocytosis by microglia of post-synaptic compounds was detected in Aßice-inoculated animals, which can partly explain the increased density of synapses in the Aßice animals. Thus, a single event as Aßice inoculation can improve the fate of AD-associated pathology and phenotype in mice several months after the event. These results open unexpected fields to develop innovative therapeutic strategies against AD.

2.
Cell Death Dis ; 15(1): 20, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195526

ABSTRACT

In recent years, primary familial brain calcification (PFBC), a rare neurological disease characterized by a wide spectrum of cognitive disorders, has been associated to mutations in the sodium (Na)-Phosphate (Pi) co-transporter SLC20A2. However, the functional roles of the Na-Pi co-transporters in the brain remain still largely elusive. Here we show that Slc20a1 (PiT-1) and Slc20a2 (PiT-2) are the most abundant Na-Pi co-transporters expressed in the brain and are involved in the control of hippocampal-dependent learning and memory. We reveal that Slc20a1 and Slc20a2 are differentially distributed in the hippocampus and associated with independent gene clusters, suggesting that they influence cognition by different mechanisms. Accordingly, using a combination of molecular, electrophysiological and behavioral analyses, we show that while PiT-2 favors hippocampal neuronal branching and survival, PiT-1 promotes synaptic plasticity. The latter relies on a likely Otoferlin-dependent regulation of synaptic vesicle trafficking, which impacts the GABAergic system. These results provide the first demonstration that Na-Pi co-transporters play key albeit distinct roles in the hippocampus pertaining to the control of neuronal plasticity and cognition. These findings could provide the foundation for the development of novel effective therapies for PFBC and cognitive disorders.


Subject(s)
Cognition , Symporters , Ion Transport , Neuronal Plasticity/genetics , Phosphates
3.
Acta Neuropathol Commun ; 11(1): 66, 2023 04 22.
Article in English | MEDLINE | ID: mdl-37087498

ABSTRACT

Alzheimer's disease (AD) is characterized by intracerebral deposition of abnormal proteinaceous assemblies made of amyloid-ß (Aß) peptides or tau proteins. These peptides and proteins induce synaptic dysfunctions that are strongly correlated with cognitive decline. Intracerebral infusion of well-defined Aß seeds from non-mutated Aß1-40 or Aß1-42 peptides can increase Aß depositions several months after the infusion. Familial forms of AD are associated with mutations in the amyloid precursor protein (APP) that induce the production of Aß peptides with different structures. The Aß Osaka (Aßosa mutation (E693Δ)) is located within the Aß sequence and thus the Aßosa peptides have different structures and properties as compared to non-mutated Aß1-42 peptides (Aßwt). Here, we wondered if a single exposure to this mutated Aß can worsen AD pathology as well as downstream events including cognition, cerebral connectivity and synaptic health several months after the inoculation. To answer this question we inoculated Aß1-42-bearing Osaka mutation (Aßosa) in the dentate gyrus of APPswe/PS1dE9 mice at the age of two months. Their cognition and cerebral connectivity were analyzed at 4 months post-inoculation by behavioral evaluation and functional MRI. Aß pathology as well as synaptic density were evaluated by histology. The impact of Aßosa peptides on synaptic health was also measured on primary cortical neurons. Remarkably, the intracerebral administration of Aßosa induced cognitive and synaptic impairments as well as a reduction of functional connectivity between different brain regions, 4 months post-inoculation. It increased Aß plaque depositions and increased Aß oligomers. This is the first study showing that a single, sporadic event as Aßosa inoculation can worsen the fate of the pathology and clinical outcome several months after the event. It suggests that a single inoculation of Aß regulates a large cascade of events for a long time.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice , Animals , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Cognition , Mutation/genetics , Disease Models, Animal
4.
Science ; 377(6613): eabq5011, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36137051

ABSTRACT

Recent evidence has shown that even mild mutations in the Huntingtin gene that are associated with late-onset Huntington's disease (HD) disrupt various aspects of human neurodevelopment. To determine whether these seemingly subtle early defects affect adult neural function, we investigated neural circuit physiology in newborn HD mice. During the first postnatal week, HD mice have less cortical layer 2/3 excitatory synaptic activity than wild-type mice, express fewer glutamatergic receptors, and show sensorimotor deficits. The circuit self-normalizes in the second postnatal week but the mice nonetheless develop HD. Pharmacologically enhancing glutamatergic transmission during the neonatal period, however, rescues these deficits and preserves sensorimotor function, cognition, and spine and synapse density as well as brain region volume in HD adult mice.


Subject(s)
Brain , Huntingtin Protein , Huntington Disease , Nerve Net , Neurogenesis , Synapses , Animals , Brain/abnormalities , Disease Models, Animal , Humans , Huntingtin Protein/genetics , Huntington Disease/embryology , Huntington Disease/genetics , Mice , Mice, Transgenic , Nerve Net/abnormalities , Neurogenesis/genetics , Synapses/physiology
5.
PLoS One ; 17(3): e0265070, 2022.
Article in English | MEDLINE | ID: mdl-35259205

ABSTRACT

Plant parasitic nematodes are highly abundant in all agrosystems and some species can have a major impact on crop yields. To avoid the use of chemical agents and to find alternative methods to manage these pests, research studies have mainly focused on plant resistance genes and biocontrol methods involving host plants or natural enemies. A specific alternative method may consist in supporting non-damaging indigenous species that could compete with damaging introduced species to decrease and keep their abundance at low level. For this purpose, knowledge about the biodiversity, structure and functioning of these indigenous communities is needed in order to carry out better risk assessments and to develop possible future management strategies. Here, we investigated 35 root crop fields in eight regions over two consecutive years. The aims were to describe plant parasitic nematode diversity and to assess the potential effects of cultivation practices and environmental variables on communities. Community biodiversity included 10 taxa of plant parasitic nematodes. Despite no significant abundance variations between the two sampling years, structures of communities varied among the different regions. Metadata collected for the past six years, characterizing the cultural practices and soils properties, made it possible to evaluate the impact of these variables both on the whole community and on each taxon separately. Our results suggest that, at a large scale, many variables drive the structuration of the communities. Soil variables, but also rainfall, explain the population density variations among the geographical areas. The effect of the variables differed among the taxa, but fields with few herbicide applications and being pH neutral with low heavy metal and nitrogen concentrations had the highest plant parasitic nematode densities. We discuss how these variables can affect nematode communities either directly or indirectly. These types of studies can help to better understand the variables driving the nematode communities structuration in order to support the abundance of indigenous non-damaging communities that could compete with the invasive species.


Subject(s)
Nematoda , Parasites , Tylenchida , Animals , Biodiversity , Plants , Soil/parasitology
6.
Brain ; 145(7): 2486-2506, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35148384

ABSTRACT

Microtubules play fundamental roles in the maintenance of neuronal processes and in synaptic function and plasticity. While dynamic microtubules are mainly composed of tyrosinated tubulin, long-lived microtubules contain detyrosinated tubulin, suggesting that the tubulin tyrosination/detyrosination cycle is a key player in the maintenance of microtubule dynamics and neuronal homeostasis, conditions that go awry in neurodegenerative diseases. In the tyrosination/detyrosination cycle, the C-terminal tyrosine of α-tubulin is removed by tubulin carboxypeptidases and re-added by tubulin tyrosine ligase (TTL). Here we show that TTL heterozygous mice exhibit decreased tyrosinated microtubules, reduced dendritic spine density and both synaptic plasticity and memory deficits. We further report decreased TTL expression in sporadic and familial Alzheimer's disease, and reduced microtubule dynamics in human neurons harbouring the familial APP-V717I mutation. Finally, we show that synapses visited by dynamic microtubules are more resistant to oligomeric amyloid-ß peptide toxicity and that expression of TTL, by restoring microtubule entry into spines, suppresses the loss of synapses induced by amyloid-ß peptide. Together, our results demonstrate that a balanced tyrosination/detyrosination tubulin cycle is necessary for the maintenance of synaptic plasticity, is protective against amyloid-ß peptide-induced synaptic damage and that this balance is lost in Alzheimer's disease, providing evidence that defective tubulin retyrosination may contribute to circuit dysfunction during neurodegeneration in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Tubulin , Alzheimer Disease/metabolism , Animals , Humans , Mice , Microtubules , Peptides/metabolism , Tubulin/metabolism , Tyrosine/metabolism
7.
Brain ; 145(1): 388-405, 2022 03 29.
Article in English | MEDLINE | ID: mdl-34302466

ABSTRACT

The sequence of cellular dysfunctions in preclinical Alzheimer's disease must be understood if we are to plot new therapeutic routes. Hippocampal neuronal hyperactivity is one of the earliest events occurring during the preclinical stages of Alzheimer's disease in both humans and mouse models. The most common hypothesis describes amyloid-ß accumulation as the triggering factor of the disease but the effects of this accumulation and the cascade of events leading to cognitive decline remain unclear. In mice, we previously showed that amyloid-ß-dependent TRPA1 channel activation triggers hippocampal astrocyte hyperactivity, subsequently inducing hyperactivity in nearby neurons. In this work, we investigated the potential protection against Alzheimer's disease progression provided by early chronic pharmacological inhibition of the TRPA1 channel. A specific inhibitor of TRPA1 channel (HC030031) was administered intraperitoneally from the onset of amyloid-ß overproduction in the APP/PS1-21 mouse model of Alzheimer's disease. Short-, medium- and long-term effects of this chronic pharmacological TRPA1 blockade were characterized on Alzheimer's disease progression at functional (astrocytic and neuronal activity), structural, biochemical and behavioural levels. Our results revealed that the first observable disruptions in the Alzheimer's disease transgenic mouse model used correspond to aberrant hippocampal astrocyte and neuron hyperactivity. We showed that chronic TRPA1 blockade normalizes astrocytic activity, avoids perisynaptic astrocytic process withdrawal, prevents neuronal dysfunction and preserves structural synaptic integrity. These protective effects preserved spatial working memory in this Alzheimer's disease mouse model. The toxic effect of amyloid-ß on astrocytes triggered by TRPA1 channel activation is pivotal to Alzheimer's disease progression. TRPA1 blockade prevents irreversible neuronal dysfunction, making this channel a potential therapeutic target to promote neuroprotection.


Subject(s)
Alzheimer Disease , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Astrocytes/metabolism , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Neurons/physiology , TRPA1 Cation Channel
8.
Cell Rep ; 35(6): 109121, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33979625

ABSTRACT

The vascular endothelial growth factor (VEGF) pathway regulates key processes in synapse function, which are disrupted in early stages of Alzheimer's disease (AD) by toxic-soluble amyloid-beta oligomers (Aßo). Here, we show that VEGF accumulates in and around Aß plaques in postmortem brains of patients with AD and in APP/PS1 mice, an AD mouse model. We uncover specific binding domains involved in direct interaction between Aßo and VEGF and reveal that this interaction jeopardizes VEGFR2 activation in neurons. Notably, we demonstrate that VEGF gain of function rescues basal synaptic transmission, long-term potentiation (LTP), and dendritic spine alterations, and blocks long-term depression (LTD) facilitation triggered by Aßo. We further decipher underlying mechanisms and find that VEGF inhibits the caspase-3-calcineurin pathway responsible for postsynaptic glutamate receptor loss due to Aßo. These findings provide evidence for alterations of the VEGF pathway in AD models and suggest that restoring VEGF action on neurons may rescue synaptic dysfunction in AD.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Synapses/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Humans , Mice
9.
Front Pharmacol ; 12: 627995, 2021.
Article in English | MEDLINE | ID: mdl-33790791

ABSTRACT

The search for effective treatments for neuropsychiatric disorders is ongoing, with progress being made as brain structure and neuronal function become clearer. The central roles played by microtubules (MT) and actin in synaptic transmission and plasticity suggest that the cytoskeleton and its modulators could be relevant targets for the development of new molecules to treat psychiatric diseases. In this context, LIM Kinase - which regulates both the actin and MT cytoskeleton especially in dendritic spines, the post-synaptic compartment of the synapse - might be a good target. In this study, we analyzed the consequences of blocking LIMK1 pharmacologically using Pyr1. We investigated synaptic plasticity defects and behavioral disorders in MAP6 KO mice, an animal model useful for the study of psychiatric disorders, particularly schizophrenia. Our results show that Pyr1 can modulate MT dynamics in neurons. In MAP6 KO mice, chronic LIMK inhibition by long-term treatment with Pyr1 can restore normal dendritic spine density and also improves long-term potentiation, both of which are altered in these mice. Pyr1 treatment improved synaptic plasticity, and also reduced social withdrawal and depressive/anxiety-like behavior in MAP6 KO mice. Overall, the results of this study validate the hypothesis that modulation of LIMK activity could represent a new therapeutic strategy for neuropsychiatric diseases.

10.
Angew Chem Int Ed Engl ; 60(9): 4689-4697, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33320993

ABSTRACT

Fatty acid ß-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are mitochondrial redox processes that generate ATP. The biogenesis of the respiratory Complex I, a 1 MDa multiprotein complex that is responsible for initiating OXPHOS, is mediated by assembly factors including the mitochondrial complex I assembly (MCIA) complex. However, the organisation and the role of the MCIA complex are still unclear. Here we show that ECSIT functions as the bridging node of the MCIA core complex. Furthermore, cryo-electron microscopy together with biochemical and biophysical experiments reveal that the C-terminal domain of ECSIT directly binds to the vestigial dehydrogenase domain of the FAO enzyme ACAD9 and induces its deflavination, switching ACAD9 from its role in FAO to an MCIA factor. These findings provide the structural basis for the MCIA complex architecture and suggest a unique molecular mechanism for coordinating the regulation of the FAO and OXPHOS pathways to ensure an efficient energy production.


Subject(s)
Electron Transport Complex I/chemistry , Flavin-Adenine Dinucleotide/metabolism , Mitochondria/metabolism , Acyl-CoA Dehydrogenases/genetics , Acyl-CoA Dehydrogenases/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Cryoelectron Microscopy , Electron Transport Complex I/metabolism , Energy Metabolism , Flavin-Adenine Dinucleotide/chemistry , Humans , Oxidative Phosphorylation , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
11.
J Neurosci ; 40(27): 5161-5176, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32444385

ABSTRACT

Alterations of excitatory synaptic function are the strongest correlate to the pathologic disturbance of cognitive ability observed in the early stages of Alzheimer's disease (AD). This pathologic feature is driven by amyloid-ß oligomers (Aßos) and propagates from neuron to neuron. Here, we investigated the mechanism by which Aßos affect the function of synapses and how these alterations propagate to surrounding healthy neurons. We used complementary techniques ranging from electrophysiological recordings and molecular biology to confocal microscopy in primary cortical cultures, and from acute hippocampal and cortical slices from male wild-type and amyloid precursor protein (APP) knock-out (KO) mice to assess the effects of Aßos on glutamatergic transmission, synaptic plasticity, and dendritic spine structure. We showed that extracellular application of Aßos reduced glutamatergic synaptic transmission and long-term potentiation. These alterations were not observed in APP KO neurons, suggesting that APP expression is required. We demonstrated that Aßos/APP interaction increases the amyloidogenic processing of APP leading to intracellular accumulation of newly produced Aßos. Intracellular Aßos participate in synaptic dysfunctions as shown by pharmacological inhibition of APP processing or by intraneuronal infusion of an antibody raised against Aßos. Furthermore, we provide evidence that following APP processing, extracellular release of Aßos mediates the propagation of the synaptic pathology characterized by a decreased spine density of neighboring healthy neurons in an APP-dependent manner. Together, our data unveil a complementary role for Aßos in AD, while intracellular Aßos alter synaptic function, extracellular Aßos promote a vicious cycle that propagates synaptic pathology from diseased to healthy neurons.SIGNIFICANCE STATEMENT Here we provide the proof that a vicious cycle between extracellular and intracellular pools of Aß oligomers (Aßos) is required for the spreading of Alzheimer's disease (AD) pathology. We showed that extracellular Aßos propagate excitatory synaptic alterations by promoting amyloid precursor protein (APP) processing. Our results also suggest that subsequent to APP cleavage two pools of Aßos are produced. One pool accumulates inside the cytosol, inducing the loss of synaptic plasticity potential. The other pool is released into the extracellular space and contributes to the propagation of the pathology from diseased to healthy neurons. Pharmacological strategies targeting the proteolytic cleavage of APP disrupt the relationship between extracellular and intracellular Aß, providing a therapeutic approach for the disease.


Subject(s)
Amyloid beta-Peptides/pharmacology , Amyloid beta-Protein Precursor/metabolism , Neuronal Plasticity/drug effects , Neurons/metabolism , Synapses/drug effects , Amyloid beta-Protein Precursor/antagonists & inhibitors , Animals , Antibodies, Blocking/pharmacology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Extracellular Space/drug effects , Extracellular Space/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Histidine/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/drug effects , Patch-Clamp Techniques , Primary Cell Culture , Synaptic Transmission/drug effects
12.
Int J Mol Sci ; 21(7)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32252271

ABSTRACT

Metabotropic γ-aminobutyric acid (GABAB) receptors contribute to the control of network activity and information processing in hippocampal circuits by regulating neuronal excitability and synaptic transmission. The dysfunction in the dentate gyrus (DG) has been implicated in Alzheimer´s disease (AD). Given the involvement of GABAB receptors in AD, to determine their subcellular localisation and possible alteration in granule cells of the DG in a mouse model of AD at 12 months of age, we used high-resolution immunoelectron microscopic analysis. Immunohistochemistry at the light microscopic level showed that the regional and cellular expression pattern of GABAB1 was similar in an AD model mouse expressing mutated human amyloid precursor protein and presenilin1 (APP/PS1) and in age-matched wild type mice. High-resolution immunoelectron microscopy revealed a distance-dependent gradient of immunolabelling for GABAB receptors, increasing from proximal to distal dendrites in both wild type and APP/PS1 mice. However, the overall density of GABAB receptors at the neuronal surface of these postsynaptic compartments of granule cells was significantly reduced in APP/PS1 mice. Parallel to this reduction in surface receptors, we found a significant increase in GABAB1 at cytoplasmic sites. GABAB receptors were also detected at presynaptic sites in the molecular layer of the DG. We also found a decrease in plasma membrane GABAB receptors in axon terminals contacting dendritic spines of granule cells, which was more pronounced in the outer than in the inner molecular layer. Altogether, our data showing post- and presynaptic reduction in surface GABAB receptors in the DG suggest the alteration of the GABAB-mediated modulation of excitability and synaptic transmission in granule cells, which may contribute to the cognitive dysfunctions in the APP/PS1 model of AD.


Subject(s)
Alzheimer Disease/metabolism , Hippocampus/metabolism , Pyramidal Cells/metabolism , Receptors, GABA-B/metabolism , Alzheimer Disease/etiology , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Animals , Biomarkers , Cell Count , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Disease Models, Animal , Hippocampus/pathology , Immunohistochemistry , Mice
13.
Biomed Opt Express ; 11(2): 660-671, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32206391

ABSTRACT

Three-dimensional microscopy is mandatory for biological investigation. We describe a stimulated emission depletion selective plane illumination microscope (STED-SPIM) that provides both ease of implementation and an efficient optical slicing. This self-aligned system is based on a single diode-pumped solid-state laser and phase masks made of simple cover glass. A three-fold reduction of the light sheet thickness is achieved together with an enhancement of the sheet uniformity. This method is validated by using fluorescent microspheres and thick slices of fixed and clarified mouse brain to provide an enhanced imaging of Alzheimer's disease models.

14.
Brain Pathol ; 30(3): 554-575, 2020 05.
Article in English | MEDLINE | ID: mdl-31729777

ABSTRACT

The hippocampus plays key roles in learning and memory and is a main target of Alzheimer's disease (AD), which causes progressive memory impairments. Despite numerous investigations about the processes required for the normal hippocampal functions, the neurotransmitter receptors involved in the synaptic deficits by which AD disables the hippocampus are not yet characterized. By combining histoblots, western blots, immunohistochemistry and high-resolution immunoelectron microscopic methods for GABAB receptors, this study provides a quantitative description of the expression and the subcellular localization of GABAB1 in the hippocampus in a mouse model of AD at 1, 6 and 12 months of age. Western blots and histoblots showed that the total amount of protein and the laminar expression pattern of GABAB1 were similar in APP/PS1 mice and in age-matched wild-type mice. In contrast, immunoelectron microscopic techniques showed that the subcellular localization of GABAB1 subunit did not change significantly in APP/PS1 mice at 1 month of age, was significantly reduced in the stratum lacunosum-moleculare of CA1 pyramidal cells at 6 months of age and significantly reduced at the membrane surface of CA1 pyramidal cells at 12 months of age. This reduction of plasma membrane GABAB1 was paralleled by a significant increase of the subunit at the intracellular sites. We further observed a decrease of membrane-targeted GABAB receptors in axon terminals contacting CA1 pyramidal cells. Our data demonstrate compartment- and age-dependent reduction of plasma membrane-targeted GABAB receptors in the CA1 region of the hippocampus, suggesting that this decrease might be enough to alter the GABAB -mediated synaptic transmission taking place in AD.


Subject(s)
Alzheimer Disease/metabolism , Hippocampus/metabolism , Neurons/metabolism , Receptors, GABA-B/metabolism , Synapses/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Cell Membrane/metabolism , Disease Models, Animal , Hippocampus/pathology , Mice , Mice, Transgenic , Neurons/pathology , Presenilin-1/genetics , Presenilin-1/metabolism , Synapses/pathology , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism
16.
Curr Biol ; 29(3): 435-448.e8, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30661803

ABSTRACT

Age-related declines in cognitive fitness are associated with a reduction in autophagy, an intracellular lysosomal catabolic process that regulates protein homeostasis and organelle turnover. However, the functional significance of autophagy in regulating cognitive function and its decline during aging remains largely elusive. Here, we show that stimulating memory upregulates autophagy in the hippocampus. Using hippocampal injections of genetic and pharmacological modulators of autophagy, we find that inducing autophagy in hippocampal neurons is required to form novel memory by promoting activity-dependent structural and functional synaptic plasticity, including dendritic spine formation, neuronal facilitation, and long-term potentiation. We show that hippocampal autophagy activity is reduced during aging and that restoring its levels is sufficient to reverse age-related memory deficits. Moreover, we demonstrate that systemic administration of young plasma into aged mice rejuvenates memory in an autophagy-dependent manner, suggesting a prominent role for autophagy to favor the communication between systemic factors and neurons in fostering cognition. Among these youthful factors, we identify osteocalcin, a bone-derived molecule, as a direct hormonal inducer of hippocampal autophagy. Our results reveal that inducing autophagy in hippocampal neurons is a necessary mechanism to enhance the integration of novel stimulations of memory and to promote the influence of systemic factors on cognitive fitness. We also demonstrate the potential therapeutic benefits of modulating autophagy in the aged brain to counteract age-related cognitive impairments.


Subject(s)
Aging/physiology , Autophagy/physiology , Hippocampus/physiology , Memory Disorders , Memory/physiology , Animals , Autophagy/drug effects , Autophagy/genetics , Disease Models, Animal , Male , Memory/drug effects , Memory Disorders/physiopathology , Mice , Mice, Inbred C57BL
17.
J Neurosci ; 38(48): 10349-10361, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30341179

ABSTRACT

Amyloid-ß (Aß) drives the synaptic impairment and dendritic spine loss characteristic of Alzheimer's disease (AD), but how Aß affects the actin cytoskeleton remains unknown and contentious. The actin-binding protein, cofilin-1 (cof1), is a major regulator of actin dynamics in dendritic spines, and is subject to phospho-regulation by multiple pathways, including the Rho-associated protein kinase (ROCK) pathway. While cof1 is implicated as a driver of the synaptotoxicity characteristic of the early phases of AD pathophysiology, questions remain about the molecular mechanisms involved. Cofilin-actin rods are observed in neurons exposed to Aß oligomers (Aßo) and in tissue from AD patients, and others have described an increased cofilin phosphorylation (p-cof1) in AD patients. Here, we report elevated p-cof1 of the postsynaptic enriched fraction of synaptosomes from cortical samples of male APP/PS1 mice and human AD cases of either sex. In primary cortical neurons, Aßo induced rapid actin stabilization and increased p-cof1 in the postsynaptic compartment of excitatory synapses within 30 min. Fluorescence recovery after photobleaching of actin-GFP and calcium imaging in live neurons expressing active or inactive cof1 mutants suggest that cof1 phosphorylation is necessary and sufficient for Aßo-induced synaptic impairment via actin stabilization before the reported formation of cofilin-actin rods. Moreover, the clinically available and well-tolerated ROCK inhibitor, fasudil, prevented Aßo-induced actin stabilization, synaptic impairment, and synaptic loss by blocking cofilin phosphorylation. Aßo also blocked the LTP-induced insertion of the AMPAR subunit, GluA1, at the postsynaptic density, in a fasudil-sensitive manner. These data support an important role for ROCKs and cofilin in mediating Aß-induced synaptic impairment.SIGNIFICANCE STATEMENT We report that amyloid-ß oligomers rapidly induce aberrant stabilization of F-actin within dendritic spines, which impairs synaptic strength and plasticity. Activation of the Rho-associated protein kinase (ROCK) pathway results in phosphorylation of cof1 and is sufficient to mediate Aßo-induced actin stabilization synaptic impairment and synaptic loss. Further, the ROCK inhibitor, fasudil, prevents cofilin phosphorylation, acute synaptic disruption, and synaptotoxicity in primary cortical neurons. Together, the herein presented data provide strong support for further study of the ROCK pathway as a therapeutic target for the cognitive decline and synaptotoxicity in Alzheimer's disease.


Subject(s)
Actins/metabolism , Alzheimer Disease/metabolism , Cofilin 1/metabolism , Cytoskeleton/metabolism , Synapses/metabolism , Adult , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Animals , Cells, Cultured , Cytoskeleton/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Phosphorylation/physiology , Synapses/pathology
18.
Nat Commun ; 9(1): 3775, 2018 09 17.
Article in English | MEDLINE | ID: mdl-30224655

ABSTRACT

Emerging evidence indicates that microtubule-associated proteins (MAPs) are implicated in synaptic function; in particular, mice deficient for MAP6 exhibit striking deficits in plasticity and cognition. How MAP6 connects to plasticity mechanisms is unclear. Here, we address the possible role of this protein in dendritic spines. We find that in MAP6-deficient cortical and hippocampal neurons, maintenance of mature spines is impaired, and can be restored by expressing a stretch of the MAP6 sequence called Mc modules. Mc modules directly bind actin filaments and mediate activity-dependent stabilisation of F-actin in dendritic spines, a key event of synaptic plasticity. In vitro, Mc modules enhance actin filament nucleation and promote the formation of stable, highly ordered filament bundles. Activity-induced phosphorylation of MAP6 likely controls its transfer to the spine cytoskeleton. These results provide a molecular explanation for the role of MAP6 in cognition, enlightening the connection between cytoskeletal dysfunction, synaptic impairment and neuropsychiatric illnesses.


Subject(s)
Actin Cytoskeleton/metabolism , Dendrites/metabolism , Microtubule-Associated Proteins/metabolism , Neurons/cytology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cells, Cultured , Fluorescence Resonance Energy Transfer , Hippocampus/cytology , Humans , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Neurons/metabolism , Phosphorylation , Photobleaching
19.
Methods Mol Biol ; 1677: 171-183, 2017.
Article in English | MEDLINE | ID: mdl-28986873

ABSTRACT

Laser Scanning Confocal Microscopy (LSCM) imaging using an appropriate fluorescent probe enables the visualization of a molecular target with high resolution, and represents a method of choice for studying expression, subcellular location, and trafficking of receptors in living cells. The chemical, physical, and pharmacological properties of the probe remain essential. Here, we describe (1) the preparation of a specific probe for NMDAR GluN2B receptor by conjugation of fluorescein to an ifenprodil-based ligand, (2) an in vitro functional assay by calcium imaging for GluN2B binding and inhibition evaluation of the probe, and (3) the labeling and confocal imaging of GluN2B in DS-red labeled living cortical neurons.


Subject(s)
Calcium/chemistry , Microscopy, Confocal/methods , Receptors, N-Methyl-D-Aspartate/chemistry , Fluorescent Dyes/chemistry , Piperidines/chemistry
20.
World J Gastroenterol ; 23(28): 5127-5145, 2017 Jul 28.
Article in English | MEDLINE | ID: mdl-28811708

ABSTRACT

AIM: To determine the role of corticotropin releasing factor receptor (CRF2) in epithelial permeability and enterocyte cell differentiation. METHODS: For this purpose, we used rat Sprague Dawley and various colon carcinoma cell lines (SW620, HCT8R, HT-29 and Caco-2 cell lines). Expression of CRF2 protein was analyzed by fluorescent immunolabeling in normal rat colon and then by western blot in dissociated colonic epithelial cells and in the lysates of colon carcinoma cell lines or during the early differentiation of HT-29 cells (ten first days). To assess the impact of CRF2 signaling on colonic cell differentiation, HT-29 and Caco-2 cells were exposed to Urocortin 3 recombinant proteins (Ucn3, 100 nmol/L). In some experiments, cells were pre-exposed to the astressin 2b (A2b) a CRF2 antagonist in order to inhibit the action of Ucn3. Intestinal cell differentiation was first analyzed by functional assays: the trans-cellular permeability and the para-cellular permeability were determined by Dextran-FITC intake and measure of the transepithelial electrical resistance respectively. Morphological modifications associated to epithelial dysfunction were analyzed by confocal microscopy after fluorescent labeling of actin (phaloidin-TRITC) and intercellular adhesion proteins such as E-cadherin, p120ctn, occludin and ZO-1. The establishment of mature adherens junctions (AJ) was monitored by following the distribution of AJ proteins in lipid raft fractions, after separation of cell lysates on sucrose gradients. Finally, the mRNA and the protein expression levels of characteristic markers of intestinal epithelial cell (IEC) differentiation such as the transcriptional factor krüppel-like factor 4 (KLF4) or the dipeptidyl peptidase IV (DPPIV) were performed by RT-PCR and western blot respectively. The specific activities of DPPIV and alkaline phosphatase (AP) enzymes were determined by a colorimetric method. RESULTS: CRF2 protein is preferentially expressed in undifferentiated epithelial cells from the crypts of colon and in human colon carcinoma cell lines. Furthermore, CRF2 expression is down regulated according to the kinetic of HT-29 cell differentiation. By performing functional assays, we found that Ucn3-induced CRF2 signaling alters both para- and trans-cellular permeability of differentiated HT-29 and Caco-2 cells. These effects are partly mediated by Ucn3-induced morphological changes associated with the disruption of mature AJ in HT-29 cells and tight junctions (TJ) in Caco-2 cells. Ucn3-mediated activation of CRF2 decreases mRNA and protein expression levels of KLF4 a transcription factor involved in IEC differentiation. This signaling is correlated to a down-regulation of key IEC markers such as DPPIV and AP, at both transcriptional and post-transcriptional levels. CONCLUSION: Our findings suggest that CRF2 signaling could modulate IEC differentiation. These mechanisms could be relevant to the stress induced epithelial alterations found in inflammatory bowel diseases.


Subject(s)
Cell Differentiation , Colon/metabolism , Enterocytes/physiology , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Adherens Junctions/metabolism , Animals , Biomarkers/metabolism , Cell Line, Tumor , Colon/cytology , Corticotropin-Releasing Hormone/metabolism , Dipeptidyl Peptidase 4/metabolism , Down-Regulation , Enterocytes/drug effects , Humans , Inflammatory Bowel Diseases/etiology , Intestinal Mucosa/drug effects , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Male , Microscopy, Confocal , Peptide Fragments/pharmacology , Peptides, Cyclic/pharmacology , Permeability , Phosphorylation , Rats , Rats, Sprague-Dawley , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Recombinant Proteins/metabolism , Signal Transduction/drug effects , Stress, Psychological/complications , Tight Junctions/metabolism , Urocortins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...