Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(15): 153603, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35499875

ABSTRACT

Traveling wave parametric amplifiers (TWPAs) have recently emerged as essential tools for broadband near quantum-limited amplification. However, their use to generate microwave quantum states still misses an experimental demonstration. In this Letter, we report operation of a TWPA as a source of two-mode squeezed microwave radiation. We demonstrate broadband entanglement generation between two modes separated by up to 400 MHz by measuring logarithmic negativity between 0.27 and 0.51 and collective quadrature squeezing below the vacuum limit between 1.5 and 2.1 dB. This work opens interesting perspectives for the exploration of novel microwave photonics experiments with possible applications in quantum sensing and continuous variable quantum computing.

2.
Nat Commun ; 13(1): 1737, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35365645

ABSTRACT

Josephson meta-materials have recently emerged as very promising platform for superconducting quantum science and technologies. Their distinguishing potential resides in ability to engineer them at sub-wavelength scales, which allows complete control over wave dispersion and nonlinear interaction. In this article we report a versatile Josephson transmission line with strong third order nonlinearity which can be tuned from positive to negative values, and suppressed second order non linearity. As an initial implementation of this multipurpose meta-material, we operate it to demonstrate reversed Kerr phase-matching mechanism in traveling wave parametric amplification. Compared to previous state of the art phase matching approaches, this reversed Kerr phase matching avoids the presence of gaps in transmission, can reduce gain ripples, and allows in situ tunability of the amplification band over an unprecedented wide range. Besides such notable advancements in the amplification performance with direct applications to superconducting quantum computing and generation of broadband squeezing, the in-situ tunability with sign reversal of the nonlinearity in traveling wave structures, with no counterpart in optics to the best of our knowledge, opens exciting experimental possibilities in the general framework of microwave quantum optics, single-photon detection and quantum limited amplification.

3.
Adv Mater ; 33(39): e2101989, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34365674

ABSTRACT

Superconductor-semiconductor-superconductor heterostructures are attractive for both fundamental studies of quantum phenomena in low-dimensional hybrid systems as well as for future high-performance low power dissipating nanoelectronic and quantum devices. In this work, ultrascaled monolithic Al-Ge-Al nanowire heterostructures featuring monocrystalline Al leads and abrupt metal-semiconductor interfaces are used to probe the low-temperature transport in intrinsic Ge (i-Ge) quantum dots. In particular, demonstrating the ability to tune the Ge quantum dot device from completely insulating, through a single-hole-filling quantum dot regime, to a supercurrent regime, resembling a Josephson field effect transistor with a maximum critical current of 10 nA at a temperature of 390 mK. The realization of a Josephson field-effect transistor with high junction transparency provides a mechanism to study sub-gap transport mediated by Andreev states. The presented results reveal a promising intrinsic Ge-based architecture for hybrid superconductor-semiconductor devices for the study of Majorana zero modes and key components of quantum computing such as gatemons or gate tunable superconducting quantum interference devices.

4.
ACS Nano ; 13(12): 14145-14151, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31816231

ABSTRACT

Semiconductor-superconductor hybrid systems have outstanding potential for emerging high-performance nanoelectronics and quantum devices. However, critical to their successful application is the fabrication of high-quality and reproducible semiconductor-superconductor interfaces. Here, we realize and measure axial Al-Ge-Al nanowire heterostructures with atomically precise interfaces, enwrapped by an ultrathin epitaxial Si layer further denoted as Al-Ge/Si-Al nanowire heterostructures. The heterostructures were synthesized by a thermally induced exchange reaction of single-crystalline Ge/Si core/shell nanowires and lithographically defined Al contact pads. Applying this heterostructure formation scheme enables self-aligned quasi one-dimensional crystalline Al leads contacting ultrascaled Ge/Si segments with contact transparencies greater than 96%. Integration into back-gated field-effect devices and continuous scaling beyond lithographic limitations allows us to exploit the full potential of the highly transparent contacts to the 1D hole gas at the Ge-Si interface. This leads to the observation of ballistic transport as well as quantum confinement effects up to temperatures of 150 K. Low-temperature measurements reveal proximity-induced superconductivity in the Ge/Si core/shell nanowires. The realization of a Josephson field-effect transistor allows us to study the subgap structure caused by multiple Andreev reflections. Most importantly, the absence of a quantum dot regime indicates a hard superconducting gap originating from the highly transparent contacts to the 1D hole gas, which is potentially interesting for the study of Majorana zero modes. Moreover, underlining the importance of the proposed thermally induced Al-Ge/Si-Al heterostructure formation technique, our system could contribute to the development of key components of quantum computing such as gatemon or transmon qubits.

5.
Nat Commun ; 10(1): 5259, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31748501

ABSTRACT

Electromagnetic fields possess zero point fluctuations which lead to observable effects such as the Lamb shift and the Casimir effect. In the traditional quantum optics domain, these corrections remain perturbative due to the smallness of the fine structure constant. To provide a direct observation of non-perturbative effects driven by zero point fluctuations in an open quantum system we wire a highly non-linear Josephson junction to a high impedance transmission line, allowing large phase fluctuations across the junction. Consequently, the resonance of the former acquires a relative frequency shift that is orders of magnitude larger than for natural atoms. Detailed modeling confirms that this renormalization is non-linear and quantum. Remarkably, the junction transfers its non-linearity to about thirty environmental modes, a striking back-action effect that transcends the standard Caldeira-Leggett paradigm. This work opens many exciting prospects for longstanding quests such as the tailoring of many-body Hamiltonians in the strongly non-linear regime, the observation of Bloch oscillations, or the development of high-impedance qubits.

6.
Nanotechnology ; 22(31): 315302, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21737875

ABSTRACT

We present a novel shadow evaporation technique for the realization of junctions and capacitors. The design by e-beam lithography of strongly asymmetric undercuts on a bilayer resist enables in situ fabrication of junctions and capacitors without the use of the well-known suspended bridge (Dolan 1977 Appl. Phys. Lett. 31 337-9). The absence of bridges increases the mechanical robustness of the resist mask as well as the accessible range of the junction size, from 10(-2) µm(2) to more than 10(4) µm(2). We have fabricated Al/AlO(x)/Al Josephson junctions, phase qubit and capacitors using a 100 kV e-beam writer. Although this high voltage enables a precise control of the undercut, implementation using a conventional 20 kV e-beam is also discussed. The phase qubit coherence times, extracted from spectroscopy resonance width, Rabi and Ramsey oscillation decays and energy relaxation measurements, are longer than the ones obtained in our previous samples realized by standard techniques. These results demonstrate the high quality of the junction obtained by this bridge-free technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...