Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(2): 1422-1433, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36712919

ABSTRACT

Magnesium alloys are being studied for use in temporary orthopedic implants because of their mechanical properties, which are similar to those of human bone, and their good biocompatibility. However, their application is limited due to their rapid degradation, and early loss of their mechanical properties, decreasing the stability of the implant and its proper synchronization with tissue regeneration. In this regard, various surface coatings have been used to improve their biological, physico-chemical and biodegradation properties. Currently, one of the most explored strategies is using smart coatings because of their self-healing properties that can slow down the corrosion process of Mg and its alloys. Ceria-based materials show promise as coatings for these alloys. Their unique redox capacity not only provides Mg alloys with good self-healing properties but also interesting biological properties, which are described in this paper. Despite this, some problems and challenges related to the biocompatibility and application of these materials in coatings remain unsolved. In this article, a critical review is presented summarizing the most representative literature on ceria-based coatings on Mg alloys for their potential use as biomaterials. The results show that ceria is a versatile material that may be used in industrial and biomedical applications.

2.
Heliyon ; 5(5): e01608, 2019 May.
Article in English | MEDLINE | ID: mdl-31193210

ABSTRACT

"Titanium dioxide (TiO2) is a semiconductor material that exhibits antibacterial activity due to its photocatalytic properties under ultraviolet light. On the other hand, silver also exhibits strong antibacterial activity towards a wide range of microorganisms and TiO2 with silver addition exhibits more efficient photocatalytic properties than unmodified TiO2. In this work, TiO2 nanoparticles were synthesized by the hydrothermal method and modified with silver by two different methods: wet impregnation (Ex situ) and In situ incorporation. The antimicrobial activity of TiO2 nanoparticles synthesized and modified by both methods was evaluated against Escherichia coli and Staphylococcus aureus. The results showed that TiO2 nanoparticles have anatase phase. Also, spherical morphology with a mean particle size around 10.6 nm was obtained. The presence of silver in the modified TiO2 nanoparticles was confirmed by EDS and XPS. TiO2 particles modified by the Ex situ method, showed a better bactericidal activity compared to the particles modified by In situ incorporation method and TiO2 unmodified nanoparticles. This study demonstrated that both methods used to modify the titanium dioxide nanoparticles are effective as bactericidal materials and better results were found for the Ex situ method."

3.
J Colloid Interface Sci ; 383(1): 148-54, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22796067

ABSTRACT

Ni-based catalysts supported on Zn-modified alumina were investigated in the ethanol steam reforming reaction. A commercial γ-alumina was impregnated with different amounts of zinc nitrate (0, 2, 5, 10, 15, 20 wt.% on Zn basis), calcined, and then impregnated with nickel nitrate aqueous solutions. The samples were characterized by a number of techniques: N(2) adsorption at 77 K, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray fluorescence (XRF), and temperature-programmed reduction (TPR). Their catalytic behavior in the ethanol steam reforming reaction was studied at 873 K, with a H(2)O/ethanol ratio of 5:1. Two effects of the presence of Zn were detected. On the one hand, zinc modifies the surface structure and the surface chemistry of the catalysts by formation of zinc aluminates, and on the other hand, zinc oxide can be reduced to metallic zinc under reaction conditions, thus modifying the catalytic properties of the active phase. The presence of Zn increases the ethanol conversion to gaseous compounds as compared with the catalyst supported on the Zn-free commercial alumina. The addition of a small amount of Pt (1 wt.%) causes a beneficial effect in the reaction. When Ni catalysts were used without a previous reduction treatment, ethylene was formed in high amounts; however, the Pt-Ni catalysts need no reduction pre-treatment to achieve high H(2) yields (close to 70%) and showed a high stability versus time on stream because of the control of the production of ethylene, a coke precursor.

SELECTION OF CITATIONS
SEARCH DETAIL
...