Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 109: 103844, 2020 09.
Article in English | MEDLINE | ID: mdl-32543408

ABSTRACT

Biliary tract rhabdomyosarcoma is a soft tissue malignant musculoskeletal tumor which is located in the biliary tract. Although this tumor represents less than 1% of the total amount of childhood cancers, when localized, a >70% overall 5-year survival rate, the resection is clinically challenging and complications might exist during the biliary obstruction. Although surgery remains a mainstay, complete tumor resection is generally difficult to achieve without mutilation and severe long-term sequelae. Therefore, manufacturing multi-material 3D surgical planning prototypes of the case provides a great opportunity for surgeons to learn beforehand what they can expect. Additionally, practicing before the operation enhances the probability of success. That is why different compositions of materials have been characterized to match the mechanical properties of the liver. To do this, Dynamic Mechanical Analysis (DMA) tests and Shore hardness tests have been carried out. Amongst the material samples produced, 6%wt PVA (poly vinyl alcohol)/1%wt PHY (Phytagel)-1FT (Freeze-Thaw cycles) and 1%wt agarose appear as the best options for mimicking the liver tissue in terms of viscoelasticity. Regarding the Shore hardness, the best solution is 1%wt agarose. Additionally, a surgical planning prototype using this last material mentioned was manufactured and validated using a CT (Computed Tomography) scanner. In most of the structures the difference between the 3D model and the organ in terms of dimensions is less than 3.35 mm, which represents a low dimensional error, around 1%. On the other hand, the total manufacturing cost of the 3D physical model was €513 which is relatively low in comparison with other technologies.


Subject(s)
Biliary Tract , Rhabdomyosarcoma , Humans , Printing, Three-Dimensional , Rhabdomyosarcoma/diagnostic imaging , Rhabdomyosarcoma/surgery , Tomography, X-Ray Computed
2.
Ann Biomed Eng ; 48(2): 536-555, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31741226

ABSTRACT

The aim of this paper is to review the recent evolution of additive manufacturing (AM) within the medical field of preoperative surgical planning. The discussion begins with an overview of the different techniques, pointing out their advantages and disadvantages as well as an in-depth comparison of different characteristics of the printed parts. Then, the state-of-the-art with respect to preoperative surgical planning is presented. On the one hand, different surgical planning prototypes manufactured by several AM technologies are described. On the other hand, materials used for mimicking different living tissues are explored by focusing on the material properties: elastic modulus, hardness, etc. As a result, doctors can practice before performing surgery and thereby reduce the time needed for the operation. The subject of patient education is also introduced. A thorough review of the process that is required to obtain 3D printed surgical planning prototypes, which is based on different stages, is then carried out. Finally, the ethical issues associated with 3D printing in medicine are discussed, along with its future perspectives. Overall, this is important for improving the outcome of the surgery, since doctors will be able to visualize the affected organs and even to practice surgery before performing it.


Subject(s)
Models, Anatomic , Plastic Surgery Procedures , Preoperative Care , Printing, Three-Dimensional , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...