Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 110: 110683, 2020 May.
Article in English | MEDLINE | ID: mdl-32204110

ABSTRACT

Multifunctional nanoparticulate systems, especially those used in medicine, are currently of great interest. In this work, the in-vitro anticancer activity of As4S4/Fe3O4 composites dispersed in a water solution of Poloxamer 407 on breast MCF-7 and tongue SCC-25 cancer cells was verified. An increase in apoptotic cells as a consequence of higher caspase activities, a decrease in mitochondrial membrane potential and an accumulation of cells in the G2/M and subG0/G1 phases were detected after treatment with the As4S4/Fe3O4 nanosuspensions. The sterically stabilized nanosuspensions were characterized in relation to their particle size distribution, zeta potential and long-term stability properties. The interaction between the solid and liquid phases of the nanosuspensions was also studied using Fourier transform infrared spectroscopy.


Subject(s)
Antineoplastic Agents/pharmacology , Arsenicals/pharmacology , Ferric Compounds/pharmacology , Nanoparticles/chemistry , Sulfides/pharmacology , Suspensions/chemistry , Caspases/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Humans , Magnetic Phenomena , Membrane Potential, Mitochondrial/drug effects , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Particle Size , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared , Static Electricity , Temperature
2.
Mater Sci Eng C Mater Biol Appl ; 71: 541-551, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27987742

ABSTRACT

Arsenic sulfide compounds have a long history of application in a traditional medicine. In recent years, realgar has been studied as a promising drug in cancer treatment. In this study, the arsenic sulfide (As4S4) nanoparticles combined with zinc sulfide (ZnS) ones in different molar ratio have been prepared by a simple mechanochemical route in a planetary mill. The successful synthesis and structural properties were confirmed and followed via X-ray diffraction and high-resolution transmission electron microscopy measurements. The morphology of the particles was studied via scanning electron microscopy and transmission electron microscopy methods and the presence of nanocrystallites was verified. For biological tests, the prepared As4S4/ZnS nanoparticles were further milled in a circulation mill in a water solution of Poloxamer 407 (0.5wt%), in order to cover the particles with this biocompatible copolymer and to obtain stable nanosuspensions with unimodal distribution. The average size of the particles in the nanosuspensions (~120nm) was determined by photon cross-correlation spectroscopy method. Stability of the nanosuspensions was determined via particle size distribution and zeta potential measurements, confirming no physico-chemical changes for several months. Interestingly, with the increasing amount of ZnS in the sample, the stability was improved. The anti-cancer effects were tested on two melanoma cell lines, A375 and Bowes, with promising results, confirming increased efficiency of the samples containing both As4S4 and ZnS nanocrystals.


Subject(s)
Antineoplastic Agents , Arsenicals , Drug Carriers , Melanoma/drug therapy , Nanoparticles/chemistry , Poloxamer , Sulfides , Zinc Compounds , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Arsenicals/chemistry , Arsenicals/pharmacokinetics , Arsenicals/pharmacology , Cell Line, Tumor , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Humans , Melanoma/metabolism , Melanoma/pathology , Poloxamer/chemistry , Poloxamer/pharmacokinetics , Poloxamer/pharmacology , Sulfides/chemistry , Sulfides/pharmacokinetics , Sulfides/pharmacology , Zinc Compounds/chemistry , Zinc Compounds/pharmacokinetics , Zinc Compounds/pharmacology
3.
J Pharm Biomed Anal ; 117: 419-25, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26444751

ABSTRACT

Positron annihilation lifetime spectroscopy was applied to characterize free-volume structure of polyvinylpyrrolidone used as nonionic stabilizer in the production of many nanocomposite pharmaceuticals. The polymer samples with an average molecular weight of 40,000 g mol(-1) were pelletized in a single-punch tableting machine under an applied pressure of 0.7 GPa. Strong mixing in channels of positron and positronium trapping were revealed in the polyvinylpyrrolidone pellets. The positron lifetime spectra accumulated under normal measuring statistics were analysed in terms of unconstrained three- and four-term decomposition, the latter being also realized under fixed 0.125 ns lifetime proper to para-positronium self-annihilation in a vacuum. It was shown that average positron lifetime extracted from each decomposition was primary defined by long-lived ortho-positronium component. The positron lifetime spectra treated within unconstrained three-term fitting were in obvious preference, giving third positron lifetime dominated by ortho-positronium pick-off annihilation in a polymer matrix. This fitting procedure was most meaningful, when analysing expected positron trapping sites in polyvinylpyrrolidone-stabilized nanocomposite pharmaceuticals.


Subject(s)
Materials Testing/methods , Nanoparticles/analysis , Povidone/analysis , Nanoparticles/chemistry , Povidone/chemistry , Spectrum Analysis, Raman/methods , X-Ray Diffraction/methods
4.
J Colloid Interface Sci ; 454: 121-33, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26005798

ABSTRACT

Significant increase of the adsorption ability of the eggshell biomaterial toward cadmium was observed upon milling, as is evidenced by the value of maximum monolayer adsorption capacity of 329mgg(-1), which is markedly higher than in the case of most "green" sorbents. The main driving force of the adsorption was proven to be the presence of aragonite phase as a consequence of phase transformation from calcite occurring during milling. Cadmium is adsorbed in a non-reversible way, as documented by different techniques (desorption tests, XRD and EDX measurements). The optimum pH for cadmium adsorption was 7. The adsorption process was accompanied by the increase of the value of specific surface area. The course of adsorption has been described by Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The adsorption kinetics was evaluated using three models, among which the best correlation coefficients and the best normalized standard deviation values were achieved for the pseudo-second order model and the intraparticle diffusion model, respectively.


Subject(s)
Cadmium/isolation & purification , Calcium Carbonate/chemistry , Drinking Water/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Animals , Cations, Divalent , Chickens , Eggs/analysis , Hydrogen-Ion Concentration , Kinetics , Thermodynamics , Waste Products , Water Purification/methods
5.
Neoplasma ; 61(6): 700-9, 2014.
Article in English | MEDLINE | ID: mdl-25150315

ABSTRACT

The aim of the present study was to compare the effect of realgar nanoparticles and arsenic trioxide (ATO) on viability, DNA damage, proliferation, autophagy and apoptosis in the human melanoma cell lines BOWES and A375. The application of various flow cytometric methods for measurements cell viability, DNA cell cycle, mitochondrial potential, lysosomal activity, and intracellular content of glutathione was used. In addition, quantitative PCR, western blotting and multiplex bead array analyses were applied for evaluation of redox stress, autophagic flux, and cell signaling alterations.The results showed that realgar treatment of studied cells caused modulation of cell proliferation, induced a block in G2/M phase of the cell cycle and altered phosphorylation of IκB, Akt, ERK1/2, p38, and JNK kinases, as well as decreased mitochondrial membrane potential. Additionally, it appeared that induction of cell death by both realgar and ATO was dose-dependent, when lower (0.3 µM) dosage increased lysosomal activity and induced autophagy and higher (1.25 µM) concentration resulted in the appearance of apoptosis, while pan-caspase inhibitor attenuated more efficiently realgar- than ATO-induced cell death. Furthermore, low concentrations of ATO and realgar nanoparticles increased the content of intracellular glutathione and elevated γ-H2AX expression confirmed DNA damage preferentially at higher concentrations of both drugs used. Further analysis revealed slight differences in time-dependent phosphorylation pattern due to both realgar and ATO treatments, while significant differences were noticed between cell lines. In conclusion, realgar nanoparticles and ATO treatment induced dose-dependent activation of autophagy and apoptosis in both melanoma cell lines, when autophagy flux was determined at lower drug concentrations and the switch to apoptosis occurred at higher concentrations of both arsenic forms.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Arsenicals/pharmacology , Autophagy/drug effects , Melanoma/drug therapy , Oxides/pharmacology , Sulfides/pharmacology , Amino Acid Chloromethyl Ketones/pharmacology , Arsenic Trioxide , Cell Line, Tumor , Cell Proliferation/drug effects , Chloroquine/pharmacology , DNA Damage , Glutathione/analysis , Humans , Melanoma/pathology , Nanoparticles , Phosphorylation
6.
J Hazard Mater ; 262: 1204-12, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23531452

ABSTRACT

In this paper, the sorption of arsenic onto nanocrystalline magnetite mineral Fe3O4 was studied in a model system. Nanocrystalline magnetite was produced by mechanical activation in a planetary ball mill from natural microcrystalline magnetite. As a consequence of milling, the specific surface area increased from 0.1m(2)/g to 11.9 m(2)/g and the surface site concentration enhanced from 2.2 sites/nm(2) to 8.4 sites/nm(2). These changes in surface properties of magnetite lead to the enhancement of arsenic removal from model system. The best sorption ability was achieved with magnetite sample activated for 90 min. In this case the sample was able to absorb around 4 mg/g. The structural changes of magnetite were also observed and the new hematite phase was detected after 120 min of milling. A good correlation between the decreasing particle size, increasing specific surface area and reduction of saturation magnetization was found. In desorption study, KOH and NaOH were found as the best eluents where more than 70% of arsenic was released back into the solution. The principal novelty of the paper is that mineral magnetite, truly one nature's gift can be used after "smart" milling (mechanical activation) as an effective arsenic sorbent.


Subject(s)
Arsenic/analysis , Ferrosoferric Oxide/chemistry , Nanoparticles/chemistry , Adsorption , Arsenic/chemistry , Environmental Monitoring/methods , Ferric Compounds/chemistry , Hydrogen-Ion Concentration , Hydroxides/chemistry , Kinetics , Magnetics , Microscopy, Electron, Transmission , Minerals/chemistry , Particle Size , Potassium Compounds/chemistry , Sodium Hydroxide/chemistry , Stress, Mechanical , Surface Properties , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...