Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 11(9)2021 09 17.
Article in English | MEDLINE | ID: mdl-34572590

ABSTRACT

We present a thermodynamic study of the interaction of synthetic, linear polyelectrolytes with bovine serum albumin (BSA). All polyelectrolytes are based on poly(allyl glycidyl ether) which has been modified by polymer-analogous reaction with anionic (-SO3Na), cationic (-NH3Cl or -NHMe2Cl) or zwitterionic groups (-NMe2(CH2)3SO3). While the anionic polymer shows a very weak interaction, the zwitterionic polymer exhibits no interaction with BSA (pI = 4.7) under the applied pH = 7.4, ionic strength (I = 23-80 mM) and temperature conditions (T = 20-37 °C). A strong binding, however, was observed for the polycations bearing primary amino or tertiary dimethyl amino groups, which could be analysed in detail by isothermal titration calorimetry (ITC). The analysis was done using an expression which describes the free energy of binding, ΔGb, as the function of the two decisive variables, temperature, T, and salt concentration, cs. The underlying model splits ΔGb into a term related to counterion release and a term related to water release. While the number of released counter ions is similar for both systems, the release of bound water is more important for the primary amine compared to the tertiary N,N-dimethyl amine presenting polymer. This finding is further traced back to a closer contact of the polymers' protonated primary amino groups in the complex with oppositely charged moieties of BSA as compared to the bulkier protonated tertiary amine groups. We thus present an investigation that quantifies both driving forces for electrostatic binding, namely counterion release and change of hydration, which contribute to a deeper understanding with direct impact on future advancements in the biomedical field.


Subject(s)
Osmolar Concentration , Polyelectrolytes/chemistry , Static Electricity , Animals , Calorimetry , Cattle , Entropy , Epoxy Compounds/chemistry , Serum Albumin, Bovine/chemistry , Thermodynamics
2.
Mater Sci Eng C Mater Biol Appl ; 108: 110505, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31923996

ABSTRACT

Electrospinning is one of the most investigated methods used to produce polymeric fiber scaffolds that mimic the morphology of native extracellular matrix. These structures have been extensively studied in the context of scaffolds for tissue regeneration. However, the compactness of materials obtained by traditional electrospinning, collected as two-dimensional non-woven scaffolds, can limit cell infiltration and tissue ingrowth. In addition, for applications in smooth muscle tissue engineering, highly elastic scaffolds capable of withstanding cyclic mechanical strains without suffering significant permanent deformations are preferred. In order to address these challenges, we report the fabrication of microscale 3D helically coiled scaffolds (referred as 3D-HCS) by wet-electrospinning method, a modification of the traditional electrospinning process in which a coagulation bath (non-solvent system for the electrospun material) is used as the collector. The present study, for the first time, successfully demonstrates the feasibility of using this method to produce various architectures of 3D helically coiled scaffolds (HCS) from segmented copolyester of poly (butylene succinate-co-dilinoleic succinate) (PBS-DLS), a thermoplastic elastomer. We examined the role of process parameters and propose a mechanism for the HCS formation. Fabricated 3D-HCS showed high specific surface area, high porosity, and good elasticity. Further, the marked increase in cell proliferation on 3D-HCS confirmed the suitability of these materials as scaffolds for soft tissue engineering.


Subject(s)
Butylene Glycols/chemistry , Elastomers , Electrochemistry/methods , Polyesters/chemistry , Polymers/chemistry , Tissue Scaffolds , Animals , Cell Line , Cell Proliferation , Cell Survival , Elasticity , Imaging, Three-Dimensional , Mice , Microscopy, Electron, Scanning , Porosity , Stress, Mechanical , Surface Properties , Tissue Engineering/methods , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...