Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Opt ; 22(2): 26003, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28301654

ABSTRACT

The present study describes utilization of two photon excitation fluorescence (2PE) microscopy for visualization of the hemoglobin in human and porcine erythrocytes and their empty membranes (i.e., ghosts). High-quality, label- and fixation-free visualization of hemoglobin was achieved at excitation wavelength 730 nm by detecting visible autofluorescence. Localization in the suspension and spatial distribution (i.e., mapping) of residual hemoglobin in erythrocyte ghosts has been resolved by 2PE. Prior to the 2PE mapping, the presence of residual hemoglobin in the bulk suspension of erythrocyte ghosts was confirmed by cyanmethemoglobin assay. 2PE analysis revealed that the distribution of hemoglobin in intact erythrocytes follows the cells' shape. Two types of erythrocytes, human and porcine, characterized with discocyte and echinocyte morphology, respectively, showed significant differences in hemoglobin distribution. The 2PE images have revealed that despite an extensive washing out procedure after gradual hypotonic hemolysis, a certain amount of hemoglobin localized on the intracellular side always remains bound to the membrane and cannot be eliminated. The obtained results open the possibility to use 2PE microscopy to examine hemoglobin distribution in erythrocytes and estimate the purity level of erythrocyte ghosts in biotechnological processes.


Subject(s)
Erythrocytes/chemistry , Erythrocytes/cytology , Hemoglobins/analysis , Microscopy, Fluorescence , Animals , Erythrocyte Membrane/chemistry , Hemoglobins/metabolism , Humans , Swine
2.
J Biotechnol ; 240: 14-22, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-27773756

ABSTRACT

The objective of our study was to develop controlled drug delivery system based on erythrocyte ghosts for amphiphilic compound sodium diclofenac considering the differences between erythrocytes derived from two readily available materials - porcine slaughterhouse and outdated transfusion human blood. Starting erythrocytes, empty erythrocyte ghosts and diclofenac loaded ghosts were compared in terms of the encapsulation efficiency, drug releasing profiles, size distribution, surface charge, conductivity, surface roughness and morphology. The encapsulation of sodium diclofenac was performed by an osmosis based process - gradual hemolysis. During this process sodium diclofenac exerted mild and delayed antihemolytic effect and increased potassium efflux in porcine but not in outdated human erythrocytes. FTIR spectra revealed lack of any membrane lipid disorder and chemical reaction with sodium diclofenac in encapsulated ghosts. Outdated human erythrocyte ghosts with detected nanoscale damages and reduced ability to shrink had encapsulation efficiency of only 8%. On the other hand, porcine erythrocyte ghosts had encapsulation efficiency of 37% and relatively slow drug release rate. More preserved structure and functional properties of porcine erythrocytes related to their superior encapsulation and release performances, define them as more appropriate for the usage in sodium diclofenac encapsulation process.


Subject(s)
Diclofenac , Drug Delivery Systems , Erythrocytes/drug effects , Hemolysis , Animals , Diclofenac/administration & dosage , Drug Compounding , Drug Delivery Systems/methods , Erythrocyte Membrane , Humans , Osmosis , Particle Size , Species Specificity , Swine
3.
Eur J Pharm Biopharm ; 108: 220-225, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27648957

ABSTRACT

Formulating poorly water soluble drugs using ordered mesoporous silica materials is an emerging approach to tackle solubility-related bioavailability problems. The current study was conducted to assess the bioavailability-enhancing potential of ordered mesoporous silica in man. In this open-label, randomized, two-way cross-over study, 12 overnight fasted healthy volunteers received a single dose of fenofibrate formulated with ordered mesoporous silica or a marketed product based on micronized fenofibrate. Plasma concentrations of fenofibric acid, the pharmacologically active metabolite of fenofibrate, were monitored up to 96h post-dose. The rate (Cmax/dose increased by 77%; tmax reduced by 0.75h) and extent of absorption (AUC0-24h/dose increased by 54%) of fenofibrate were significantly enhanced following administration of the ordered mesoporous silica based formulation. The results of this study serve as a proof of concept in man for this novel formulation approach.


Subject(s)
Fenofibrate/pharmacokinetics , Silicon Dioxide/chemistry , Water/chemistry , Administration, Oral , Adult , Area Under Curve , Biological Availability , Cross-Over Studies , Female , Fenofibrate/analogs & derivatives , Fenofibrate/chemistry , Healthy Volunteers , Humans , Limit of Detection , Male , Middle Aged , Porosity , Solubility
4.
J Pharm Sci ; 105(8): 2381-5, 2016 08.
Article in English | MEDLINE | ID: mdl-27364460

ABSTRACT

The present study aims to evaluate the in vitro and in vivo performance of ordered mesoporous silica (OMS) as a carrier for the poorly water-soluble compound fenofibrate. Fenofibrate was loaded into OMS via incipient wetness impregnation to obtain a 29% drug load and formulated into capsules. Two capsule dosage forms (containing 33.5 and 16.75 mg fenofibrate, respectively) were compared with the commercially available forms-Lipanthyl(®) (fenofibrate microcrystals) and Tricor(®) (fenofibrate nanocrystals). In vitro dissolution tests showed that the amount of fenofibrate released from Lipanthyl(®) and Tricor(®) was approximately 30%, whereas approximately 66% and 60% of the drug was released from OMS capsules containing 33.5 and 16.75 mg of fenofibrate, respectively. Storage of OMS capsules loaded with 33.5 mg of fenofibrate at 25°C/60% relative humidity (RH) or 40°C/75% RH did not alter the release kinetics, nor the physical state of the compound, pointing the stability of the present formulation. The in vivo study in dogs confirmed satisfying level of safety and tolerability of fenofibrate-OMS formulation (eq. 33.5 mg) with the potential to improve the absorption of fenofibrate. Though some variability in the data, this formulation is promising to be further investigated in a clinical trial setting.


Subject(s)
Drug Carriers/chemistry , Fenofibrate/pharmacokinetics , Hypolipidemic Agents/pharmacokinetics , Silicon Dioxide/chemistry , Administration, Oral , Animals , Biological Availability , Dogs , Drug Liberation , Fenofibrate/blood , Fenofibrate/chemistry , Hypolipidemic Agents/blood , Hypolipidemic Agents/chemistry , Male , Porosity , Solubility
5.
Biotechnol Prog ; 32(4): 1046-55, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27254304

ABSTRACT

The present study investigated preparation of bovine and porcine erythrocyte membranes from slaughterhouse blood as bio-derived materials for delivery of dexamethasone-sodium phosphate (DexP). The obtained biomembranes, i.e., ghosts were characterized in vitro in terms of morphological properties, loading parameters, and release behavior. For the last two, an UHPLC/-HESI-MS/MS based analytical procedure for absolute drug identification and quantification was developed. The results revealed that loading of DexP into both type of ghosts was directly proportional to the increase of drug concentration in the incubation medium, while incubation at 37°C had statistically significant effect on loaded amount of DexP (P < 0.05). The encapsulation efficiency was about fivefold higher in porcine compared to bovine ghosts. Insight into ghosts' surface morphology by field emission-scanning electron microscopy and atomic force microscopy confirmed that besides inevitable effects of osmosis, DexP inclusion itself had no observable additional effect on the morphology of the ghosts carriers. DexP release profiles were dependent on erythrocyte ghost type and amount of residual hemoglobin. However, sustained DexP release was achieved and shown over 3 days from porcine ghosts and 5 days from bovine erythrocyte ghosts. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1046-1055, 2016.


Subject(s)
Dexamethasone/analogs & derivatives , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Animals , Cattle , Chromatography, High Pressure Liquid , Dexamethasone/chemistry , Dexamethasone/metabolism , Erythrocyte Membrane/chemistry , Erythrocytes/chemistry , Swine , Tandem Mass Spectrometry , Time Factors
6.
Colloids Surf B Biointerfaces ; 122: 250-259, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25051307

ABSTRACT

The present study was aimed at investigating the effect of isolation process-gradual hypotonic hemolysis on chosen parameters of the erythrocyte membranes (ghosts) originating from bovine and porcine slaughterhouse blood. The estimation of the gradual hypotonic hemolysis as a drug loading procedure for the erythrocyte ghosts was performed as well. Based on the results derived from analysis of the osmotic properties of the erythrocytes, the gradual hemolysis was performed with high volume of erythrocytes and 35mM hypotonic sodium-phosphate/NaCl, enabling >90% of hemolysis for both types of erythrocytes. Detailed insight into ghosts' morphology by field emission-scanning electron microscopy revealed a distortion from erythrocyte shape and an altered surface texture with increased bilayer curvature for both samples. Compared to erythrocytes, an average diameter of ghosts from both type of erythrocytes decreased for only about 10%. The reported unidispersity of the isolated ghosts is of great importance for their potential application as vehicles of active compounds. Gradual hemolysis did not lead to substantial loss of cholesterol and membrane/cytoskeleton proteins. This result indicated the ghosts' possibility to mimic the chemical and structural anisotropic environment of in vivo cell membranes, which is of significance for drug diffusion and partition coefficients. Induced shift of phosphatidylserine to external surface of the ghosts demonstrated their potential application as vehicles for targeted drug delivery to cells of reticuloendothelial system. Ultra high-performance liquid chromatography and Fourier transform infrared spectroscopy revealed the presence of a drug model - dexamethasone-sodium phosphate, and its interaction with structural components in both types of erythrocyte ghosts.


Subject(s)
Abattoirs , Blood , Erythrocyte Membrane , Hemolysis/drug effects , Animals , Cattle , Electrophoresis, Polyacrylamide Gel , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...