Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
BMC Anesthesiol ; 23(1): 411, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38087263

ABSTRACT

BACKGROUND: Ethyl alcohol and cannabis are widely used recreational substances with distinct effects on the brain. These drugs increase accidental injuries requiring treatment under anesthesia. Moreover, alcohol and cannabis are often used in anesthetized rodents for biomedical research. Here, we compared the influence of commonly used forms of anesthesia, injectable ketamine/xylazine (KX) versus inhalant isoflurane, on alcohol- and (-)-trans-delta9-tetrahydrocannabinol (THC) effects on cerebral arteriole diameter evaluated in vivo. METHODS: Studies were performed on male and female Sprague-Dawley rats subjected to intracarotid catheter placement for drug infusion, and cranial window surgery for monitoring pial arteriole diameter. Depth of anesthesia was monitored every 10-15 min by toe-pinch. Under KX, the number of toe-pinch responders was maximal after the first dose of anesthesia and diminished over time in both males and females. In contrast, the number of toe-pinch responders under isoflurane slowly raised over time, leading to increase in isoflurane percentage until deep anesthesia was re-established. Rectal temperature under KX remained stable in males while dropping in females. As expected for gaseous anesthesia, both males and females exhibited rectal temperature drops under isoflurane. RESULTS: Infusion of 50 mM alcohol (ethanol, EtOH) into the cerebral circulation rendered robust constriction in males under KX anesthesia, this alcohol action being significantly smaller, but still present under isoflurane anesthesia. In females, EtOH did not cause measurable changes in pial arteriole diameter regardless of the anesthetic. These findings indicate a strong sex bias with regards to EtOH induced vasoconstriction. Infusion of 42 nM THC in males and females under isoflurane tended to constrict cerebral arterioles in both males and females when compared to isovolumic infusion of THC vehicle (dimethyl sulfoxide in saline). Moreover, THC-driven changes in arteriole diameter significantly differed in magnitude depending on the anesthetic used. Simultaneous administration of 50 mM alcohol and 42 nM THC to males constricted cerebral arterioles regardless of the anesthetic used. In females, constriction by the combined drugs was also observed, with limited influence by anesthetic presence. CONCLUSIONS: We demonstrate that two commonly used anesthetic formulations differentially influence the level of vasoconstriction caused by alcohol and THC actions in cerebral arterioles.


Subject(s)
Anesthetics, Inhalation , Anesthetics , Isoflurane , Ketamine , Female , Rats , Male , Animals , Isoflurane/pharmacology , Arterioles , Dronabinol/pharmacology , Rats, Sprague-Dawley , Anesthetics, Inhalation/pharmacology , Ethanol/pharmacology , Xylazine/pharmacology
2.
Nat Commun ; 14(1): 7248, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945687

ABSTRACT

Progesterone (≥1 µM) is used in recovery of cerebral ischemia, an effect likely contributed to by cerebrovascular dilation. The targets of this progesterone action are unknown. We report that micromolar (µM) progesterone activates mouse cerebrovascular myocyte BK channels; this action is lost in ß1-/- mice myocytes and in lipid bilayers containing BK α subunit homomeric channels but sustained on ß1/ß4-containing heteromers. Progesterone binds to both regulatory subunits, involving two steroid binding sites conserved in ß1-ß4: high-affinity (sub-µM), which involves Trp87 in ß1 loop, and low-affinity (µM) defined by TM1 Tyr32 and TM2 Trp163. Thus progesterone, but not its oxime, bridges TM1-TM2. Mutation of the high-affinity site blunts channel activation by progesterone underscoring a permissive role of the high-affinity site: progesterone binding to this site enables steroid binding at the low-affinity site, which activates the channel. In support of our model, cerebrovascular dilation evoked by µM progesterone is lost by mutating Tyr32 or Trp163 in ß1 whereas these mutations do not affect alcohol-induced cerebrovascular constriction. Furthermore, this alcohol action is effectively counteracted both in vitro and in vivo by progesterone but not by its oxime.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channels , Progesterone , Mice , Animals , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Progesterone/pharmacology , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/chemistry , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/metabolism , Steroids/pharmacology , Binding Sites , Ethanol/pharmacology , Oximes/pharmacology
3.
Am J Physiol Regul Integr Comp Physiol ; 325(6): R769-R781, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37867475

ABSTRACT

Moderate-to-heavy episodic ("binge") drinking is the most common form of alcohol consumption in the United States. Alcohol at binge drinking concentrations reduces brain artery diameter in vivo and in vitro in many species including rats, mice, and humans. Despite the critical role played by brain vessels in maintaining neuronal function, there is a shortage of methodologies to simultaneously assess neuron and blood vessel function in deep brain regions. Here, we investigate cerebrovascular responses to ethanol by choosing a deep brain region that is implicated in alcohol disruption of brain function, the hippocampal CA1, and describe the process for obtaining simultaneous imaging of pyramidal neuron activity and diameter of nearby microvessels in freely moving mice via a dual-color miniscope. Recordings of neurovascular events were performed upon intraperitoneal injection of saline versus 3 g/kg ethanol in the same mouse. In male mice, ethanol mildly increased the amplitude of calcium signals while robustly decreasing their frequency. Simultaneously, ethanol decreased microvessel diameter. In females, ethanol did not change the amplitude or frequency of calcium signals from CA1 neurons but decreased microvessel diameter. A linear regression of ethanol-induced reduction in number of active neurons and microvessel constriction revealed a positive correlation (R = 0.981) in females. Together, these data demonstrate the feasibility of simultaneously evaluating neuronal and vascular components of alcohol actions in a deep brain area in freely moving mice, as well as the sexual dimorphism of hippocampal neurovascular responses to alcohol.


Subject(s)
Calcium , Neurons , Female , Humans , Mice , Rats , Male , Animals , Ethanol/pharmacology , Hippocampus , Microvessels
4.
Article in English | MEDLINE | ID: mdl-37846408

ABSTRACT

Despite the significant number of people who may be taking pregnenolone supplements while drinking alcohol (ethanol), the widely documented cerebrovascular actions of pregnenolone and ethanol, and the critical dependence of cerebrovascular function on cerebral artery diameter, there are no studies addressing the effect of pregnenolone + ethanol in combination on cerebral artery diameter. We investigated this by evaluating the effect of this combination on middle cerebral artery diameter in male and female C57BL/6J mice, both in vivo and in vitro. The use of de-endothelialized, in vitro pressurized middle cerebral artery segments allowed us to conduct a concentration-response study of constriction induced by pregnenolone ± ethanol, in which drug action could be evaluated independently of circulating and endothelial factors. In both male and female animals, pregnenolone at lower concentrations (≤1 µM) was found to synergize with 50 mM ethanol to cause vasoconstriction. In both sexes, this synergism was lost as one or both vasoconstrictors approached their maximally effective concentrations (75 mM and 10 µM for ethanol and pregnenolone, respectively), whether this was evaluated in vitro or in vivo using a cranial window. Vasoconstriction by pregnenolone + ethanol was abolished by 1 µM paxilline, indicating BK channel involvement. Moreover, cell-free recordings of BK channel activity in cerebral artery myocyte membranes showed that 10 µM pregnenolone and pregnenolone +50 mM ethanol reduced channel activity to an identical extent, suggesting that these drugs inhibit cerebrovascular BK channels via a common mechanism or mechanisms. Indeed, pregnenolone was found to disrupt allosteric coupling to Ca2+-driven gating, as previously reported for ethanol.

5.
Article in English | MEDLINE | ID: mdl-37593366

ABSTRACT

Fetal alcohol syndrome represents the leading known preventable cause of mental retardation. FAS is on the most severe side of fetal alcohol spectrum disorders that stem from the deleterious effects of prenatal alcohol exposure. Affecting as many as 1 to 5 out of 100 children, FASD most often results in brain abnormalities that extend to structure, function, and cerebral hemodynamics. The present review provides an analysis of high-resolution imaging techniques that are used in animals and human subjects to characterize PAE-driven changes in the developing brain. Variants of magnetic resonance imaging such as magnetic resonance microscopy, magnetic resonance spectroscopy, diffusion tensor imaging, along with positron emission tomography, single-photon emission computed tomography, and photoacoustic imaging, are modalities that are used to study the influence of PAE on brain structure and function. This review briefly describes the aforementioned imaging modalities, the main findings that were obtained using each modality, and touches upon the advantages/disadvantages of each imaging approach.

7.
Int J Mol Sci ; 24(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37240049

ABSTRACT

Calcium/voltage-activated potassium channels (BK) control smooth muscle (SM) tone and cerebral artery diameter. They include channel-forming α and regulatory ß1 subunits, the latter being highly expressed in SM. Both subunits participate in steroid-induced modification of BK activity: ß1 provides recognition for estradiol and cholanes, resulting in BK potentiation, whereas α suffices for BK inhibition by cholesterol or pregnenolone. Aldosterone can modify cerebral artery function independently of its effects outside the brain, yet BK involvement in aldosterone's cerebrovascular action and identification of channel subunits, possibly involved in steroid action, remains uninvestigated. Using microscale thermophoresis, we demonstrated that each subunit type presents two recognition sites for aldosterone: at 0.3 and ≥10 µM for α and at 0.3-1 µM and ≥100 µM for ß1. Next, we probed aldosterone on SM BK activity and diameter of middle cerebral artery (MCA) isolated from ß1-/- vs. wt mice. Data showed that ß1 leftward-shifted aldosterone-induced BK activation, rendering EC50~3 µM and ECMAX ≥ 10 µM, at which BK activity increased by 20%. At similar concentrations, aldosterone mildly yet significantly dilated MCA independently of circulating and endothelial factors. Lastly, aldosterone-induced MCA dilation was lost in ß1-/- mice. Therefore, ß1 enables BK activation and MCA dilation by low µM aldosterone.


Subject(s)
Aldosterone , Large-Conductance Calcium-Activated Potassium Channels , Mice , Animals , Aldosterone/pharmacology , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/genetics , Muscle, Smooth, Vascular , Dilatation , Steroids/pharmacology , Cerebral Arteries
8.
Adv Exp Med Biol ; 1422: 169-191, 2023.
Article in English | MEDLINE | ID: mdl-36988881

ABSTRACT

Inwardly rectifying potassium (Kir) channels are integral membrane proteins that control the flux of potassium ions across cell membranes and regulate membrane permeability. All eukaryotic Kir channels require the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) for activation. In recent years, it has become evident that the function of many members of this family of channels is also mediated by another essential lipid-cholesterol. Here, we focus on members of the Kir2 and Kir3 subfamilies and their modulation by these two key lipids. We discuss how PI(4,5)P2 and cholesterol bind to Kir2 and Kir3 channels and how they affect channel activity. We also discuss the accumulating evidence indicating that there is interplay between PI(4,5)P2 and cholesterol in the modulation of Kir2 and Kir3 channels. In particular, we review the crosstalk between PI(4,5)P2 and cholesterol in the modulation of the ubiquitously expressed Kir2.1 channel and the synergy between these two lipids in the modulation of the Kir3.4 channel, which is primarily expressed in the heart. Additionally, we demonstrate that there is also synergy in the modulation of Kir3.2 channels, which are expressed in the brain. These observations suggest that alterations in the relative levels PI(4,5)P2 and cholesterol may fine-tune Kir channel activity.


Subject(s)
Potassium Channels, Inwardly Rectifying , Cell Membrane/metabolism , Cholesterol/metabolism , Potassium/metabolism , Lipids , G Protein-Coupled Inwardly-Rectifying Potassium Channels
9.
Adv Exp Med Biol ; 1422: 217-243, 2023.
Article in English | MEDLINE | ID: mdl-36988883

ABSTRACT

Ca2+/voltage-gated, large conductance K+ channels (BKCa) are formed by homotetrameric association of α (slo1) subunits. Their activity, however, is suited to tissue-specific physiology largely due to their association with regulatory subunits (ß and γ types), chaperone proteins, localized signaling, and the channel's lipid microenvironment. PIP2 and cholesterol can modulate BKCa activity independently of downstream signaling, yet activating Ca2+i levels and regulatory subunits control ligand action. At physiological Ca2+i and voltages, cholesterol and PIP2 reduce and increase slo1 channel activity, respectively. Moreover, slo1 proteins provide sites that seem to recognize cholesterol and PIP2: seven CRAC motifs in the slo1 cytosolic tail and a string of positively charged residues (Arg329, Lys330, Lys331) immediately after S6, respectively. A model that could explain the modulation of BKCa activity by cholesterol and/or PIP2 is hypothesized. The roles of additional sites, whether in slo1 or BKCa regulatory subunits, for PIP2 and/or cholesterol to modulate BKCa function are also discussed.


Subject(s)
Ion Channel Gating , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Cytosol/metabolism , Ion Channel Gating/physiology , Signal Transduction , Cholesterol/metabolism , Large-Conductance Calcium-Activated Potassium Channels/chemistry
10.
Am J Physiol Regul Integr Comp Physiol ; 324(4): R480-R496, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36717168

ABSTRACT

Alcohol intake leading to blood ethanol concentrations (BEC) ≥ legal intoxication modifies brain blood flow with increases in some regions and decreases in others. Brain regions receive blood from the Willis' circle branches: anterior, middle (MCA) and posterior cerebral (PCA), and basilar (BA) arteries. Rats and mice have been used to identify the targets mediating ethanol-induced effects on cerebral arteries, with conclusions being freely interchanged, albeit data were obtained in different species/arterial branches. We tested whether ethanol action on cerebral arteries differed between male rat and mouse and/or across different brain regions and identified the targets of alcohol action. In both species and all Willis' circle branches, ethanol evoked reversible and concentration-dependent constriction (EC50s ≈ 37-86 mM; below lethal BEC in alcohol-naïve humans). Although showing similar constriction to depolarization, both species displayed differential responses to ethanol: in mice, MCA constriction was highly sensitive to the presence/absence of the endothelium, whereas in rat PCA was significantly more sensitive to ethanol than its mouse counterpart. In the rat, but not the mouse, BA was more ethanol sensitive than other branches. Both interspecies and regional variability were ameliorated by endothelium. Selective large conductance (BK) channel block in de-endothelialized vessels demonstrated that these channels were the effectors of alcohol-induced cerebral artery constriction across regions and species. Variabilities in alcohol actions did not fully matched KCNMB1 expression across vessels. However, immunofluorescence data from KCNMB1-/- mouse arteries electroporated with KCNMB1-coding cDNA demonstrate that KCNMB1 proteins, which regulate smooth muscle (SM) BK channel function and vasodilation, regulate interspecies and regional variability of brain artery responses to alcohol.


Subject(s)
Cerebral Arteries , Ethanol , Animals , Male , Mice , Rats , Ethanol/pharmacology , Ethanol/metabolism , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Muscle, Smooth, Vascular/metabolism , Rats, Sprague-Dawley
11.
Article in English | MEDLINE | ID: mdl-36108317

ABSTRACT

Introduction: Alcohol (ethanol) and cannabis are among the most widely used recreational drugs in the world. With increased efforts toward legalization of cannabis, there is an alarming trend toward the concomitant (including simultaneous) use of cannabis products with alcohol for recreational purpose. While each drug possesses a distinct effect on cerebral circulation, the consequences of their simultaneous use on cerebral artery diameter have never been studied. Thus, we set to address the effect of simultaneous application of alcohol and (-)-trans-Δ-9-tetrahydrocannabinol (THC) on cerebral artery diameter. Materials and Methods: We used Sprague-Dawley rats because rat cerebral circulation closely mimics morphology, ultrastructure, and function of cerebral circulation of humans. We focused on the middle cerebral artery (MCA) because it supplies blood to the largest brain territory when compared to any other cerebral artery stemming from the circle of Willis. Experiments were performed on pressurized MCA ex vivo, and in cranial windows in vivo. Ethanol and THC were probed at physiologically relevant concentrations. Researchers were "blind" to experimental group identity during data analysis to avoid bias. Results: In males, ethanol mixed with THC resulted in greater constriction of ex vivo pressurized MCA when compared to the effects exerted by separate application of each drug. In females, THC, ethanol, or their mixture failed to elicit measurable effect. Vasoconstriction by ethanol/THC mixture was ablated by either endothelium removal or pharmacological block of calcium- and voltage-gated potassium channels of large conductance (BK type) and cannabinoid receptors. Block of prostaglandin production and of endothelin receptors also blunted constriction by ethanol/THC. In males, the in vivo constriction of MCA by ethanol/THC did not differ from ethanol alone. In females, the in vivo constriction of this artery by ethanol was significantly smaller than in males. However, artery constriction by ethanol/THC did not differ from the constriction in males. Conclusions: Our data point at the complex nature of the cerebrovascular effects elicited by simultaneous use of ethanol and THC. These effects include both local and systemic components.

12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(12): 159235, 2022 12.
Article in English | MEDLINE | ID: mdl-36113825

ABSTRACT

Excessive cholesterol constitutes a major risk factor for vascular disease. Within cells, cholesterol is distributed in detergent-sensitive and detergent-resistant fractions, with the largest amount of cholesterol residing in cellular membranes. We set out to determine whether various arteries differ in their ability to accumulate esterified and non-esterified cholesterol in detergent-sensitive versus detergent-resistant fractions throughout the course of a high-cholesterol diet. Male Sprague-Dawley rats were placed on 2 % cholesterol diet while a control group was receiving iso-caloric standard chow. Liver, aorta, and pulmonary, mesenteric, and cerebral arteries were collected at 2-6, 8-12, 14-18, and 20-24 weeks from the start of high-cholesterol diet. After fraction separation, esterified and free non-esterified cholesterol levels were measured. In all arteries, largest cholesterol amounts were present in detergent-sensitive fractions in the non-esterified form. Overall, cholesterol in aorta and cerebral arteries was elevated during 14-18 weeks of high-cholesterol diet. Cerebral arteries also exhibited increase in esterified cholesterol within detergent-sensitive domains, as well as increase in cholesterol level in the detergent-resistant fraction at earlier time-points of diet. Pulmonary artery and mesenteric artery were largely resistant to cholesterol accumulation. Quantitative polymerase chain reaction (qPCR) analysis revealed up-regulation of low-density lipoprotein receptor (Ldlr) and low-density lipoprotein receptor-related protein 1 (Lrp1) gene expression in cerebral arteries when compared to mesenteric and pulmonary arteries, respectively. In summary, we unveiled the differential ability of arteries to accumulate cholesterol over the course of a high-cholesterol diet. The differential accumulation of cholesterol seems to correlate with the up-regulated gene expression of proteins responsible for cholesterol uptake.


Subject(s)
Detergents , Hypercholesterolemia , Animals , Arteries/metabolism , Cholesterol/metabolism , Diet , Lipoproteins, LDL , Male , Rats , Rats, Sprague-Dawley
13.
Bioorg Med Chem ; 68: 116876, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35716586

ABSTRACT

Large conductance, calcium/voltage-gated potassium channels (BK) regulate critical body processes, including neuronal, secretory and smooth muscle (SM) function. While BK-forming alpha subunits are ubiquitous, accessory beta1 subunits are highly expressed in SM. This makes beta1 an attractive target for pharmaceutical development to treat SM disorders, such as hypertension or cerebrovascular spasm. Compounds activating BK via beta1 have been identified, yet they exhibit low potency and off-target effects while antagonists that limit agonist activity via beta 1 remain unexplored. Beta1-dependent BK ligand-based pharmacophore modeling and ZINC database searches identified 15 commercially available hits. Concentration-response curves on BK alpha + beta1 subunit-mediated currents were obtained in CHO cells. One potent (EC50 = 20 nM) and highly efficacious activator (maximal activation = ×10.3 of control) was identified along with a potent antagonist (KB = 3.02 nM), both of which were dependent on beta1. Our study provides the first proof-of-principle that an agonist/antagonist pair can be used to control beta1-containing BK activity.


Subject(s)
Calcium , Large-Conductance Calcium-Activated Potassium Channel beta Subunits , Animals , Calcium/metabolism , Cricetinae , Cricetulus , Large-Conductance Calcium-Activated Potassium Channels , Patch-Clamp Techniques
14.
Proc Natl Acad Sci U S A ; 119(13): e2109431119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35333652

ABSTRACT

SignificanceCholesterol is one of the main components found in plasma membranes and is involved in lipid-dependent signaling enabled by integral membrane proteins such as inwardly rectifying potassium (Kir) channels. Similar to other ion channels, most of the Kir channels are down-regulated by cholesterol. One of the very few notable exceptions is Kir3.4, which is up-regulated by this important lipid. Here, we discovered and characterized a molecular switch that controls the impact (up-regulation vs. down-regulation) of cholesterol on Kir3.4. Our results provide a detailed molecular mechanism of tunable cholesterol regulation of a potassium channel.


Subject(s)
Cholesterol , G Protein-Coupled Inwardly-Rectifying Potassium Channels , Cell Membrane/metabolism , Cholesterol/metabolism , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Potassium/metabolism , Signal Transduction
15.
Mol Pharmacol ; 101(3): 132-143, 2022 03.
Article in English | MEDLINE | ID: mdl-34969832

ABSTRACT

Calcium- and voltage-gated K+ channels of large conductance (BKs) are expressed in the cell membranes of all excitable tissues. Currents mediated by BK channel-forming slo1 homotetramers are consistently inhibited by increases in membrane cholesterol (CLR). The molecular mechanisms leading to this CLR action, however, remain unknown. Slo1 channels are activated by increases in calcium (Ca2+) nearby Ca2+-recognition sites in the slo1 cytosolic tail: one high-affinity and one low-affinity site locate to the regulator of conductance for K+ (RCK) 1 domain, whereas another high-affinity site locates within the RCK2 domain. Here, we first evaluated the crosstalking between Ca2+ and CLR on the function of slo1 (cbv1 isoform) channels reconstituted into planar lipid bilayers. CLR robustly reduced channel open probability while barely decreasing unitary current amplitude, with CLR maximal effects being observed at 10-30 µM internal Ca2+ CLR actions were not only modulated by internal Ca2+ levels but also disappeared in absence of this divalent. Moreover, in absence of Ca2+, BK channel-activating concentrations of magnesium (10 mM) did not support CLR action. Next, we evaluated CLR actions on channels where the different Ca2+-sensing sites present in the slo1 cytosolic domain became nonfunctional via mutagenesis. CLR still reduced the activity of low-affinity Ca2+ (RCK1:E379A, E404A) mutants. In contrast, CLR became inefficacious when both high-affinity Ca2+ sites were mutated (RCK1:D367A,D372A and RCK2:D899N,D900N,D901N,D902N,D903N), yet still was able to decrease the activity of each high-affinity site mutant. Therefore, BK channel inhibition by CLR selectively requires optimal levels of Ca2+ being recognized by either of the slo1 high-affinity Ca2+-sensing sites. SIGNIFICANCE STATEMENT: Results reveal that inhibition of calcium/voltage-gated K+ channel of large conductance (BK) (slo1) channels by membrane cholesterol requires a physiologically range of internal calcium (Ca2+) and is selectively linked to the two high-affinity Ca2+-sensing sites located in the cytosolic tail domain, which underscores that Ca2+ and cholesterol actions are allosterically coupled to the channel gate. Cholesterol modification of BK channel activity likely contributes to disruption of normal physiology by common health conditions that are triggered by disruption of cholesterol homeostasis.


Subject(s)
Calcium/metabolism , Cholesterol/metabolism , Cytosol/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Animals , Calcium Channel Blockers/pharmacology , Cytosol/drug effects , HEK293 Cells , Humans , Large-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Membrane Potentials/drug effects , Membrane Potentials/physiology , Protein Structure, Secondary , Rats
16.
Neuropharmacology ; 192: 108603, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34023335

ABSTRACT

Pregnenolone is a neurosteroid that modulates glial growth and differentiation, neuronal firing, and several brain functions, these effects being attributed to pregnenolone actions on the neurons and glial cells themselves. Despite the vital role of the cerebral circulation for brain function and the fact that pregnenolone is a vasoactive agent, pregnenolone action on brain arteries remain unknown. Here, we obtained in vivo concentration response curves to pregnenolone on middle cerebral artery (MCA) diameter in anesthetized male and female C57BL/6J mice. In both male and female animals, pregnenolone (1 nM-100 µM) constricted MCA in a concentration-dependent manner, its maximal effect reaching ~22-35% decrease in diameter. Pregnenolone action was replicated in intact and de-endothelialized, in vitro pressurized MCA segments with pregnenolone evoking similar constriction in intact and de-endothelialized MCA. Neurosteroid action was abolished by 1 µM paxilline, a selective blocker of Ca2+ - and voltage-gated K+ channels of large conductance (BK). Cell-attached, patch-clamp recordings on freshly isolated smooth muscle cells from mouse MCAs demonstrated that pregnenolone at concentrations that constricted MCAs in vitro and in vivo (10 µM), reduced BK activity (NPo), with an average decrease in NPo reaching 24.2%. The concentration-dependence of pregnenolone constriction of brain arteries and inhibition of BK activity in intact cells were paralleled by data obtained in cell-free, inside-out patches, with maximal inhibition reached at 10 µM pregnenolone. MCA smooth muscle BKs include channel-forming α (slo1 proteins) and regulatory ß1 subunits, encoded by KCNMA1 and KCNMB1, respectively. However, pregnenolone-driven decrease in NPo was still evident in MCA myocytes from KCNMB1-/- mice. Following reconstitution of slo1 channels into artificial, binary phospholipid bilayers, 10 µM pregnenolone evoked slo1 NPo inhibition which was similar to that seen in native membranes. Lastly, pregnenolone failed to constrict MCA from KCNMA1-/- mice. In conclusion, pregnenolone constricts MCA independently of neuronal, glial, endothelial and circulating factors, as well as of cell integrity, organelles, complex membrane cytoarchitecture, and the continuous presence of cytosolic signals. Rather, this action involves direct inhibition of SM BK channels, which does not require ß1 subunits but is mediated through direct sensing of the neurosteroid by the channel-forming α subunit.


Subject(s)
Brain/drug effects , Cerebral Arteries/drug effects , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Neurosteroids/toxicity , Pregnenolone/toxicity , Vasoconstriction/drug effects , Animals , Brain/blood supply , Brain/metabolism , Cells, Cultured , Cerebral Arteries/metabolism , Dose-Response Relationship, Drug , Female , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Large-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Vasoconstriction/physiology
17.
J Biol Chem ; 296: 100381, 2021.
Article in English | MEDLINE | ID: mdl-33556372

ABSTRACT

Calcium-/voltage-gated, large-conductance potassium channels (BKs) control critical physiological processes, including smooth muscle contraction. Numerous observations concur that elevated membrane cholesterol (CLR) inhibits the activity of homomeric BKs consisting of channel-forming alpha subunits. In mammalian smooth muscle, however, native BKs include accessory KCNMB1 (ß1) subunits, which enable BK activation at physiological intracellular calcium. Here, we studied the effect of CLR enrichment on BK currents from rat cerebral artery myocytes. Using inside-out patches from middle cerebral artery (MCA) myocytes at [Ca2+]free=30 µM, we detected BK activation in response to in vivo and in vitro CLR enrichment of myocytes. While a significant increase in myocyte CLR was achieved within 5 min of CLR in vitro loading, this brief CLR enrichment of membrane patches decreased BK currents, indicating that BK activation by CLR requires a protracted cellular process. Indeed, blocking intracellular protein trafficking with brefeldin A (BFA) not only prevented BK activation but led to channel inhibition upon CLR enrichment. Surface protein biotinylation followed by Western blotting showed that BFA blocked the increase in plasmalemmal KCNMB1 levels achieved via CLR enrichment. Moreover, CLR enrichment of arteries with naturally high KCNMB1 levels, such as basilar and coronary arteries, failed to activate BK currents. Finally, CLR enrichment failed to activate BK channels in MCA myocytes from KCNMB1-/- mouse while activation was detected in their wild-type (C57BL/6) counterparts. In conclusion, the switch in CLR regulation of BK from inhibition to activation is determined by a trafficking-dependent increase in membrane levels of KCNMB1 subunits.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channel beta Subunits/metabolism , Muscle Cells/metabolism , Potassium Channels/metabolism , Animals , Calcium Channels/metabolism , Cell Membrane/metabolism , Cerebral Arteries/cytology , Cerebral Arteries/metabolism , Cholesterol/metabolism , Cholesterol/physiology , Coronary Vessels/metabolism , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/physiology , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Potassium Channels/physiology , Rats , Rats, Sprague-Dawley , Vasoconstriction
18.
Article in English | MEDLINE | ID: mdl-33383194

ABSTRACT

Alcohol constricts cerebral arteries via inhibition of voltage/calcium-gated, large conductance potassium (BK) channels in vascular myocytes. Using a rat model of high-cholesterol (high-CLR) diet and CLR enrichment of cerebral arteries in vitro, we recently showed that CLR protected against alcohol-induced constriction of cerebral arteries. The subcellular mechanism(s) underlying CLR protection against alcohol-induced constriction of the artery is unclear. Here we use a rat model of high-CLR diet and patch-clamp recording of BK channels in inside-out patches from cerebral artery myocytes to demonstrate that this diet antagonizes inhibition of BK currents by 50 mM ethanol. High-CLR-driven protection against alcohol inhibition of BK currents is reversed following CLR depletion in vitro. Similar to CLR accumulation in vivo, pre-incubation of arterial myocytes from normocholesterolemic rats in CLR-enriching media in vitro protects against alcohol-induced inhibition of BK current. However, application of CLR-enriching media to cell-free membrane patches does not protect against the alcohol effect. These different outcomes point to the involvement of cell signaling in CLR-alcohol interaction on BK channels. Incubation of myocytes with the PKC activators phorbol 12-myristate 13-acetate or 1,2-dioctanoyl-sn-glycerol, but not with the PKC inhibitor Gouml 6983, prior to patch excision precludes CLR enrichment from antagonizing alcohol action. Thus, PKC activation either disables the CLR target(s) or competes with elevated CLR. Favoring the latter possibility, 1,2-dioctanoyl-sn-glycerol protects against alcohol-induced inhibition of BK currents in patches from myocytes with naïve CLR. Our findings document that CLR antagonism of alcohol-induced BK channel inhibition requires cell integrity and is enabled by a PKC-dependent mechanism(s).


Subject(s)
Cholesterol/metabolism , Ethanol/pharmacology , Large-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Muscle, Smooth, Vascular/drug effects , Potassium Channel Blockers/pharmacology , Protein Kinase C/metabolism , Animals , Cells, Cultured , Cerebral Arteries/cytology , Cerebral Arteries/drug effects , Cerebral Arteries/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Male , Muscle Cells/cytology , Muscle Cells/drug effects , Muscle Cells/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Rats , Rats, Sprague-Dawley
19.
J Pharmacol Exp Ther ; 375(2): 247-257, 2020 11.
Article in English | MEDLINE | ID: mdl-32862144

ABSTRACT

The increasing recognition of the role played by cerebral artery dysfunction in brain disorders has fueled the search for new cerebrovascular dilators. Celastrol, a natural triterpene undergoing clinical trials for treating obesity, exerts neuroprotection, which was linked to its antioxidant/anti-inflammatory activities. We previously showed that celastrol fit pharmacophore criteria for activating calcium- and voltage-gated potassium channels of large conductance (BK channels) made of subunits cloned from cerebrovascular smooth muscle (SM). These recombinant BK channels expressed in a heterologous system were activated by celastrol. Activation of native SM BK channels is well known to evoke cerebral artery dilation. Current data demonstrate that celastrol (1-100 µM) dilates de-endothelialized, ex vivo pressurized middle cerebral arteries (MCAs) from rats, with EC50 = 45 µM and maximal effective concentration (Emax)= 100 µM and with MCA diameter reaching a 10% increase over vehicle-containing, time-matched values (P < 0.05). A similar vasodilatory efficacy is achieved when celastrol is probed on MCA segments with intact endothelium. Selective BK blocking with 1 µM paxilline blunts celastrol vasodilation. Similar blunting is achieved with 0.8 mM 4-aminopirydine, which blocks voltage-gated K+ channels other than BK. Using an in vivo rat cranial window, we further demonstrate that intracarotid injections of 45 µM celastrol into pial arteries branching from MCA mimics celastrol ex vivo action. MCA constriction by ethanol concentrations reached in blood during moderate-heavy alcohol drinking (50 mM), which involves SM BK inhibition, is both prevented and reverted by celastrol. We conclude that celastrol could be an effective cerebrovascular dilator and antagonist of alcohol-induced cerebrovascular constriction, with its efficacy being uncompromised by conditions that disrupt endothelial and/or BK function. SIGNIFICANCE STATEMENT: Our study demonstrates for the first time that celastrol significantly dilates rat cerebral arteries both ex vivo and in vivo and both prevents and reverses ethanol-induced cerebral artery constriction. Celastrol actions are endothelium-independent but mediated through voltage-gated (KV) and calcium- and voltage-gated potassium channel of large conductance (BK) K+ channels. This makes celastrol an appealing new agent to evoke cerebrovascular dilation under conditions in which endothelial and/or BK channel function are impaired.


Subject(s)
Cerebral Arteries/drug effects , Cerebral Arteries/physiology , Ethanol/pharmacology , Triterpenes/pharmacology , Vasoconstriction/drug effects , Vasodilation/drug effects , Animals , Endothelium, Vascular/drug effects , Ethanol/antagonists & inhibitors , Male , Pentacyclic Triterpenes , Potassium Channels/metabolism , Rats , Rats, Sprague-Dawley
20.
J Vis Exp ; (157)2020 03 25.
Article in English | MEDLINE | ID: mdl-32281977

ABSTRACT

Cholesterol enrichment of mammalian tissues and cells, including Xenopus oocytes used for studying cell function, can be accomplished using a variety of methods. Here, we describe two important approaches used for this purpose. First, we describe how to enrich tissues and cells with cholesterol using cyclodextrin saturated with cholesterol using cerebral arteries (tissues) and hippocampal neurons (cells) as examples. This approach can be used for any type of tissue, cells, or cell lines. An alternative approach for cholesterol enrichment involves the use of low-density lipoprotein (LDL). The advantage of this approach is that it uses part of the natural cholesterol homeostasis machinery of the cell. However, whereas the cyclodextrin approach can be applied to enrich any cell type of interest with cholesterol, the LDL approach is limited to cells that express LDL receptors (e.g., liver cells, bone marrow-derived cells such as blood leukocytes and tissue macrophages), and the level of enrichment depends on the concentration and the mobility of the LDL receptor. Furthermore, LDL particles include other lipids, so cholesterol delivery is nonspecific. Second, we describe how to enrich Xenopus oocytes with cholesterol using a phospholipid-based dispersion (i.e., liposomes) that includes cholesterol. Xenopus oocytes constitute a popular heterologous expression system used for studying cell and protein function. For both the cyclodextrin-based cholesterol enrichment approach of mammalian tissue (cerebral arteries) and for the phospholipid-based cholesterol enrichment approach of Xenopus oocytes, we demonstrate that cholesterol levels reach a maximum following 5 min of incubation. This level of cholesterol remains constant during extended periods of incubation (e.g., 60 min). Together, these data provide the basis for optimized temporal conditions for cholesterol enrichment of tissues, cells, and Xenopus oocytes for functional studies aimed at interrogating the impact of cholesterol enrichment.


Subject(s)
Cholesterol/metabolism , Mammals/metabolism , Oocytes/metabolism , Xenopus laevis/metabolism , Animals , Cerebral Arteries/metabolism , Humans , Liposomes , Phospholipids/metabolism , Potassium Channels/metabolism , Rats, Sprague-Dawley , beta-Cyclodextrins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...