Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 22(8): 903-912, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37294945

ABSTRACT

CD3 bispecific T-cell engagers (TCE), comprised of a tumor-targeting domain linked to a CD3 binding domain, function by bridging target-positive tumors and CD3-expressing effector T cells enabling redirected T cell-mediated killing of tumor cells. Although the majority of CD3 bispecific molecules in clinical development incorporate tumor-targeting antibody-based binding domains, many tumor-associated antigens derive from intracellular proteins and are not accessible to targeting via antibody. Intracellular proteins processed into short peptide fragments and presented on the cell surface by MHC proteins are recognized by T-cell receptors (TCR) on the surface of T cells. Here we describe the generation and preclinical evaluation of ABBV-184, a novel TCR/anti-CD3 bispecific composed of a highly selective soluble TCR that binds a peptide derived from the oncogene survivin (BIRC5) bound to the class I MHC allele human leukocyte antigen (HLA)-A*02:01 expressed on tumor cells, linked to a specific binder to the CD3 receptor on T cells. ABBV-184 drives an optimal distance between T cell and target cell thereby enabling sensitive recognition of low-density peptide/MHC targets. Consistent with the expression profile of survivin across a broad range of both hematologic and solid tumors, treatment of acute myeloid leukemia (AML) and non-small cell lung cancer (NSCLC) cell lines with ABBV-184 results in T-cell activation, proliferation, and potent redirected cytotoxicity of HLA-A2-positive target cell lines, both in vitro and in vivo, including patient-derived AML samples. These results indicate that ABBV-184 is an attractive clinical candidate for the treatment of patients with AML and NSCLC.


Subject(s)
Antibodies, Bispecific , Carcinoma, Non-Small-Cell Lung , Hematologic Neoplasms , Leukemia, Myeloid, Acute , Lung Neoplasms , Humans , T-Lymphocytes , Carcinoma, Non-Small-Cell Lung/metabolism , Survivin/metabolism , Lung Neoplasms/metabolism , Receptors, Antigen, T-Cell , CD3 Complex , Leukemia, Myeloid, Acute/pathology , Hematologic Neoplasms/metabolism , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use
2.
J Med Chem ; 53(8): 3142-53, 2010 Apr 22.
Article in English | MEDLINE | ID: mdl-20337371

ABSTRACT

We have developed a series of phenylpyrrolidine- and phenylpiperidine-substituted benzimidazole carboxamide poly(ADP-ribose) polymerase (PARP) inhibitors with excellent PARP enzyme potency as well as single-digit nanomolar cellular potency. These efforts led to the identification of (S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (22b, A-966492). Compound 22b displayed excellent potency against the PARP-1 enzyme with a K(i) of 1 nM and an EC(50) of 1 nM in a whole cell assay. In addition, 22b is orally bioavailable across multiple species, crosses the blood-brain barrier, and appears to distribute into tumor tissue. It also demonstrated good in vivo efficacy in a B16F10 subcutaneous murine melanoma model in combination with temozolomide and in an MX-1 breast cancer xenograft model both as a single agent and in combination with carboplatin.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , BRCA1 Protein/deficiency , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Biological Availability , Blood-Brain Barrier/metabolism , Carboplatin/administration & dosage , Cell Line, Tumor , Crystallography, X-Ray , Dacarbazine/administration & dosage , Dacarbazine/analogs & derivatives , Drug Screening Assays, Antitumor , Female , Melanoma, Experimental/drug therapy , Mice , Mice, Inbred C57BL , Mice, SCID , Models, Molecular , Neoplasm Transplantation , Stereoisomerism , Structure-Activity Relationship , Temozolomide , Transplantation, Heterologous
3.
Mol Cancer Ther ; 5(4): 995-1006, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16648571

ABSTRACT

ABT-869 is a structurally novel, receptor tyrosine kinase (RTK) inhibitor that is a potent inhibitor of members of the vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptor families (e.g., KDR IC50 = 4 nmol/L) but has much less activity (IC50s > 1 micromol/L) against unrelated RTKs, soluble tyrosine kinases, or serine/threonine kinases. The inhibition profile of ABT-869 is evident in cellular assays of RTK phosphorylation (IC50 = 2, 4, and 7 nmol/L for PDGFR-beta, KDR, and CSF-1R, respectively) and VEGF-stimulated proliferation (IC50 = 0.2 nmol/L for human endothelial cells). ABT-869 is not a general antiproliferative agent because, in most cancer cells, >1,000-fold higher concentrations of ABT-869 are required for inhibition of proliferation. However, ABT-869 exhibits potent antiproliferative and apoptotic effects on cancer cells whose proliferation is dependent on mutant kinases, such as FLT3. In vivo ABT-869 is effective orally in the mechanism-based murine models of VEGF-induced uterine edema (ED50 = 0.5 mg/kg) and corneal angiogenesis (>50% inhibition, 15 mg/kg). In tumor growth studies, ABT-869 exhibits efficacy in human fibrosarcoma and breast, colon, and small cell lung carcinoma xenograft models (ED50 = 1.5-5 mg/kg, twice daily) and is also effective (>50% inhibition) in orthotopic breast and glioma models. Reduction in tumor size and tumor regression was observed in epidermoid carcinoma and leukemia xenograft models, respectively. In combination, ABT-869 produced at least additive effects when given with cytotoxic therapies. Based on pharmacokinetic analysis from tumor growth studies, efficacy correlated more strongly with time over a threshold value (cellular KDR IC50 corrected for plasma protein binding = 0.08 microg/mL, >or=7 hours) than with plasma area under the curve or Cmax. These results support clinical assessment of ABT-869 as a therapeutic agent for cancer.


Subject(s)
Enzyme Inhibitors/pharmacology , Indazoles/pharmacology , Phenylurea Compounds/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , 3T3 Cells , Animals , Cell Cycle/drug effects , Cell Division/drug effects , Cornea , Edema , Female , Mice , Neovascularization, Physiologic/drug effects , Phosphorylation , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Receptors, Platelet-Derived Growth Factor/metabolism , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/metabolism , Retinal Vessels/drug effects , Retinal Vessels/physiology , Uterus/drug effects , Uterus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...