Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cell Tissue Res ; 393(3): 537-545, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37354235

ABSTRACT

Choroid plexus, pineal gland, and habenula tend to accumulate physiologic calcifications (concrements) over a lifetime. However, until now the composition and causes of the intracranial calcifications remain unclear. The detailed analysis of concrements has been done by us using X-ray diffraction analysis (XRD), X-ray diffraction topography (XRDT), micro-CT, X-ray phase-contrast tomography (XPCT), as well as histology and immunohistochemistry (IHC). By combining physical (XRD) and biochemical (IHC) methods, we identified inorganic (hydroxyapatite) and organic (vimentin) components of the concrements. Via XPCT, XRDT, histological, and IHC methods, we assessed the structure of concrements within their appropriate tissue environment in both two and three dimensions. The study found that hydroxyapatite was a major component of all calcified depositions. It should be noted, however, that the concrements displayed distinctive characteristics corresponding to each specific structure of the brain. As a result, our study provides a basis for assessing the pathological and physiological changes that occur in brain structure containing calcifications.


Subject(s)
Calcinosis , Habenula , Pineal Gland , Humans , Choroid Plexus/pathology , Choroid Plexus/physiology , Calcinosis/pathology , Calcification, Physiologic , X-Ray Microtomography , Hydroxyapatites
3.
Sci Rep ; 11(1): 22025, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764351

ABSTRACT

The aim of this study was the detection and quantification of the Na+ depositions in the extracellular matrix of myocardial tissue, which are suggested to be bound by negatively charged glycosaminoglycan (GAG) structures. The presented experimental results are based on high resolution X-ray fluorescence (XRF) spectromicroscopy technique used to perform a comparative analysis of sodium containment in intracellular and interstitial spaces of cardiac tissues taken from animals selected by low and high sodium intake rates. The experimental results obtained show that high sodium daily intake can result in a remarkable increase of sodium content in the myocardial interstitium.


Subject(s)
Myocardium/metabolism , Sodium/metabolism , Animals , Extracellular Matrix/metabolism , Glycosaminoglycans/metabolism , Male , Osmosis , Rats, Wistar
4.
Sci Adv ; 5(10): eaav8936, 2019 10.
Article in English | MEDLINE | ID: mdl-31620553

ABSTRACT

Only a few Herculaneum rolls exhibit writing on their reverse side. Since unrolled papyri are permanently glued to paperboard, so far, this fact was known to us only from 18th-century drawings. The application of shortwave-infrared (SWIR; 1000-2500 nm) hyperspectral imaging (HSI) to one of them (PHerc. 1691/1021) has revealed portions of Greek text hidden on the back more than 220 years after their first discovery, making it possible to recover this primary source for the ongoing new edition of this precious book. SWIR HSI has produced better contrast and legibility even on the extensive text preserved on the front compared to former imaging of Herculaneum papyri at 950 nm (improperly called multispectral imaging), with a substantial impact on the text reconstruction. These promising results confirm the importance of advanced techniques applied to ancient carbonized papyri and open the way to a better investigation of hundreds of other such papyri.

5.
Sci Rep ; 7(1): 5890, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28724999

ABSTRACT

The degenerative effects of multiple sclerosis at the level of the vascular and neuronal networks in the central nervous system are currently the object of intensive investigation. Preclinical studies have demonstrated the efficacy of mesenchymal stem cell (MSC) therapy in experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis, but the neuropathology of specific lesions in EAE and the effects of MSC treatment are under debate. Because conventional imaging techniques entail protocols that alter the tissues, limiting the reliability of the results, we have used non-invasive X-ray phase-contrast tomography to obtain an unprecedented direct 3D characterization of EAE lesions at micro-to-nano scales, with simultaneous imaging of the vascular and neuronal networks. We reveal EAE-mediated alterations down to the capillary network. Our findings shed light on how the disease and MSC treatment affect the tissues, and promote X-ray phase-contrast tomography as a powerful tool for studying neurovascular diseases and monitoring advanced therapies.


Subject(s)
Capillaries/diagnostic imaging , Capillaries/pathology , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Neurons/pathology , Tomography, X-Ray , Animals , Capillaries/ultrastructure , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Imaging, Three-Dimensional , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mice, Inbred C57BL , Nanoparticles/chemistry , Nanoparticles/ultrastructure
6.
Sci Rep ; 7: 41054, 2017 01 23.
Article in English | MEDLINE | ID: mdl-28112212

ABSTRACT

The investigation of the neuronal network in mouse spinal cord models represents the basis for the research on neurodegenerative diseases. In this framework, the quantitative analysis of the single elements in different districts is a crucial task. However, conventional 3D imaging techniques do not have enough spatial resolution and contrast to allow for a quantitative investigation of the neuronal network. Exploiting the high coherence and the high flux of synchrotron sources, X-ray Phase-Contrast multiscale-Tomography allows for the 3D investigation of the neuronal microanatomy without any aggressive sample preparation or sectioning. We investigated healthy-mouse neuronal architecture by imaging the 3D distribution of the neuronal-network with a spatial resolution of 640 nm. The high quality of the obtained images enables a quantitative study of the neuronal structure on a subject-by-subject basis. We developed and applied a spatial statistical analysis on the motor neurons to obtain quantitative information on their 3D arrangement in the healthy-mice spinal cord. Then, we compared the obtained results with a mouse model of multiple sclerosis. Our approach paves the way to the creation of a "database" for the characterization of the neuronal network main features for a comparative investigation of neurodegenerative diseases and therapies.


Subject(s)
Microvessels/diagnostic imaging , Nerve Net/diagnostic imaging , Neurons/physiology , Spinal Cord/diagnostic imaging , Animals , Imaging, Three-Dimensional , Mice , Microvessels/innervation , Microvessels/physiology , Nerve Net/physiology , Spinal Cord/physiology , Synchrotrons
8.
Sci Rep ; 6: 27227, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27265417

ABSTRACT

A collection of more than 1800 carbonized papyri, discovered in the Roman 'Villa dei Papiri' at Herculaneum is the unique classical library survived from antiquity. These papyri were charred during 79 A.D. Vesuvius eruption, a circumstance which providentially preserved them until now. This magnificent collection contains an impressive amount of treatises by Greek philosophers and, especially, Philodemus of Gadara, an Epicurean thinker of 1st century BC. We read many portions of text hidden inside carbonized Herculaneum papyri using enhanced X-ray phase-contrast tomography non-destructive technique and a new set of numerical algorithms for 'virtual-unrolling'. Our success lies in revealing the largest portion of Greek text ever detected so far inside unopened scrolls, with unprecedented spatial resolution and contrast, all without damaging these precious historical manuscripts. Parts of text have been decoded and the 'voice' of the Epicurean philosopher Philodemus is brought back again after 2000 years from Herculaneum papyri.


Subject(s)
Manuscripts as Topic , Algorithms , Archaeology , Cyperus , History, Ancient , Microscopy, Phase-Contrast , Philosophy , Tomography, X-Ray
9.
Acta Biomater ; 23: 309-316, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26049151

ABSTRACT

The structure and organization of the Type I collagen microfibrils during mineral nanoparticle formation appear as the key factor for a deeper understanding of the biomineralization mechanism and for governing the bone tissue physical properties. In this work we investigated the dynamics of collagen packing during ex-vivo mineralization of ceramic porous hydroxyapatite implant scaffolds using synchrotron high resolution X-ray phase contrast micro-tomography (XPCµT) and synchrotron scanning micro X-ray diffraction (SµXRD). While XPCµT provides the direct 3D image of the collagen fibers network organization with micrometer spatial resolution, SµXRD allows to probe the structural statistical fluctuations of the collagen fibrils at nanoscale. In particular we imaged the lateral spacing and orientation of collagen fibrils during the anisotropic growth of mineral nanocrystals. Beyond throwing light on the bone regeneration multiscale process, this approach can provide important information in the characterization of tissue in health, aging and degeneration conditions. STATEMENT OF SIGNIFICANCE: BONE grafts are the most common transplants after the blood transfusions. This makes the bone-tissue regeneration research of pressing scientific and social impact. Bone is a complex hierarchical structure, where the interplay of organic and inorganic mineral phases at different length scale (from micron to atomic scale) affect its functionality and health. Thus, the understanding of bone tissue regeneration requires to image its spatial-temporal evolution (i) with high spatial resolution and (ii) at different length scale. We exploited high spatial resolution X-ray Phase Contrast micro Tomography and Scanning micro X-ray Diffraction in order to get new insight on the engineered tissue formation mechanisms. This approach could open novel routes for the early detection of different degenerative conditions of tissue.


Subject(s)
Bone Development/physiology , Bone and Bones/diagnostic imaging , Calcification, Physiologic/physiology , Collagen Type I/physiology , Collagen Type I/ultrastructure , X-Ray Diffraction/methods , Animals , Bone and Bones/ultrastructure , Computer Simulation , Models, Biological , Sheep , Tissue Scaffolds , Tomography, X-Ray Computed/methods
10.
Opt Lett ; 37(2): 262-4, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22854487

ABSTRACT

The problem of retrieving a complex function from the modulus of its Fourier transform has non-unique solutions in one dimension. Therefore iterative phase retrieval methods cannot in general be confidently applied to one-dimensional problems, due to the presence of ambiguities. We present a method for a posteriori reduction of the ambiguities based on the correlation analysis of the solution of a large number of runs of an iterative phase retrieval algorithm with different random starting phases. The method is applied to experimentally measured diffraction patterns from an x ray waveguide illuminated by hard x rays. We demonstrate the possibility of retrieving the complex wave field at the exit face of the waveguide and compare the result with theoretical prediction.

11.
Phys Rev Lett ; 97(18): 184801, 2006 Nov 03.
Article in English | MEDLINE | ID: mdl-17155548

ABSTRACT

Diffraction and refraction phenomena at the entrance of a hollow x-ray waveguide with weakly absorbing dielectric cladding layers are investigated using two independent approaches: (a) analytical and (b) numerical solutions of the wave equation in the paraxial (parabolic) approximation. It is shown that the wave penetrating through the cladding material substantially modifies the wave field near the waveguide entrance. It results in a significant increase of the total energy flux inside the guiding layer and in additional spatial modulation of the electromagnetic field.

12.
Appl Opt ; 45(12): 2821-7, 2006 Apr 20.
Article in English | MEDLINE | ID: mdl-16633436

ABSTRACT

We study the propagation of ultrashort pulses in x-ray waveguides (WGs) by addressing the problem of the temporal dispersion. Starting from basic equations, by means of numerical calculation we demonstrate that far from the absorption edges of the WGs the cladding's material dispersion is negligible. However, close to the absorption edge significant dispersion can take place. This behavior could in principle be exploited to manipulate incoming chirped beams. Moreover, using the two coherent beams produced by the WG in the second (and higher) order of resonance suggests the use of the WC as a dispersion-free beam splitter, which can facilitate x-ray pump-probe experiments in the femtosecond temporal range without the need for external sources.

13.
J Synchrotron Radiat ; 13(Pt 1): 85-7, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16371712

ABSTRACT

Among the several available X-ray optics for synchrotron radiation producing micrometre and submicrometre beams with high intensity, the X-ray waveguide (WG) can provide the smallest hard X-ray beam in one direction. A drawback of this optics is that, owing to the divergence at the exit, a nanometre-sized spot on the sample can only be obtained if this is within a few micrometres of the WG exit. Another limitation is that in planar WGs the beam is compressed in only one direction. Here, using a dynamically bent elliptical Si/Pt mirror, the guided X-ray beam has been refocused at approximately 1 m from the waveguide exit. The large working distance between the device and the submicrometre focus leaves some space for sample environment (vacuum chamber, furnace, cryostat, magnets, high-pressure device etc.) and allows cross-coupled geometries with two WGs for efficient compression in two directions.


Subject(s)
Fiber Optic Technology/instrumentation , Lenses , Synchrotrons/instrumentation , X-Ray Diffraction/instrumentation , Equipment Design , Equipment Failure Analysis , X-Ray Diffraction/methods
14.
J Xray Sci Technol ; 5(4): 396-419, 1995 Jan 01.
Article in English | MEDLINE | ID: mdl-21307509

ABSTRACT

Basic properties of whispering gallery mirrors in the soft x-ray region are considered. The following applications of whispering gallery optics are discussed: increasing the utilization efficiency of point source radiation, deflecting a synchrotron radiation beam to the vertical plane and transporting it to another horizontal level, resonators for soft x-ray lasers, and using the whispering gallery effect to investigate the roughness of concave surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...