Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(11): e47751, 2012.
Article in English | MEDLINE | ID: mdl-23155372

ABSTRACT

Infochemical production, release and detection of (Z,E)-9,11-tetradecadienyl acetate, the major component of the pheromone of the moth Spodoptera littoralis, is achieved in a novel microfluidic system designed to mimic the final step of the pheromone biosynthesis by immobilized recombinant alcohol acetyl transferase. The microfluidic system is part of an "artificial gland", i.e., a chemoemitter that comprises a microreactor connected to a microevaporator and is able to produce and release a pre-defined amount of the major component of the pheromone from the corresponding (Z,E)-9,11-tetradecadienol. Performance of the entire chemoemitter has been assessed in electrophysiological and behavioral experiments. Electroantennographic depolarizations of the pheromone produced by the chemoemitter were ca. 40% relative to that evoked by the synthetic pheromone. In a wind tunnel, the pheromone released from the evaporator elicited on males a similar attraction behavior as 3 virgin females in most of the parameters considered.


Subject(s)
Animal Communication , Pheromones/chemistry , Sex Attractants/chemistry , Spodoptera/physiology , Animals , Female , Male
2.
Biomicrofluidics ; 5(3): 34102-3410212, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22662033

ABSTRACT

To prepare a biosynthetic module in an infochemical communication project, we designed a silicon/glass microreactor with anti-adsorption polyelectrolyte multilayer coating and immobilized alcohol acetyl transferase (atf), one of the key biosynthetic enzymes of the pheromone of Spodoptera littoralis, on agarose beads inside. The system reproduces the last step of the biosynthesis in which the precursor diene alcohol (Z,E)-9,11-tetradecadienol is transformed into the major component (Z,E)-9,11-tetradecadienyl acetate. The scope of this study was to analyze and implement a multilayer, anti-adsorption coating based on layer-by-layer deposition of polyethylenimine/dextransulfate sodium salt (PEI/DSS). The multilayers were composed of two PEI with molecular weights 750 and 1.2 kDa at pH 9.2 or 6.0. Growth, morphology, and stability of the layers were analyzed by ellipsometry and atomic force microscopy (AFM). The anti-adsorption functionality of the multilayer inside the microreactor was validated. The activity of His(6)-(atf) was measured by gas chromatography coupled to mass spectrometer (GC-MS).

3.
J Am Chem Soc ; 131(5): 1650-1, 2009 Feb 11.
Article in English | MEDLINE | ID: mdl-19143524

ABSTRACT

PGMA polymer brushes are successfully grown on the inner wall of a microreactor to give a nanostructure. The oxirane groups of the brushes are used for the anchoring of a catalyst. The utility of the combination of catalyst-functionalized brushes and a microreactor is clearly demonstrated for the TBD-catalyzed Knoevenagel condensation reaction of benzaldehyde and malononitrile.

4.
Chemistry ; 14(1): 136-42, 2008.
Article in English | MEDLINE | ID: mdl-18000928

ABSTRACT

Beta-Cyclodextrin (beta-CD) monolayers have been immobilized in microchannels. The host-guest interactions on the beta-CD monolayers inside the channels were comparable to the interactions on beta-CD monolayers on planar surfaces, and a divalent fluorescent guest attached with a comparable binding strength. Proteins were attached to these monolayers inside microchannels in a selective manner by employing a strategy that uses streptavidin and orthogonal linker molecules. The design of the chip, which involved a large channel that splits into four smaller channels, allowed the channels to be addressed separately and led to the selective immobilization of antibodies. Experiments with labeled antibodies showed the selective immobilization of these antibodies in the separate channels.


Subject(s)
Proteins/chemistry , Microscopy, Fluorescence , Molecular Structure , Rhodamines/chemistry , Water/chemistry , beta-Cyclodextrins/chemistry
5.
Lab Chip ; 7(12): 1717-22, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18030392

ABSTRACT

This paper describes a multichannel silicon-glass microreactor which has been utilized to investigate the kinetics of a Knoevenagel condensation reaction under different reaction conditions. The reaction is performed on the chip in four parallel channels under identical conditions but with different residence times. A special topology of the reaction coils overcomes the common problem arising from the difference in pressure drop of parallel channels having different length. The parallelization of reaction coils combined with chemical quenching at specific locations results in a considerable reduction in experimental effort and cost. The system was tested and showed good reproducibility in flow properties and reaction kinetic data generation.

SELECTION OF CITATIONS
SEARCH DETAIL
...