Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-11088120

ABSTRACT

We study , the average conductance of the backbone, defined by two points separated by Euclidean distance r, of mass M(B) on two-dimensional percolation clusters at the percolation threshold. We find that with increasing M(B) and for fixed r, asymptotically decreases to a constant, in contrast with the behavior of homogeneous systems and nonrandom fractals (such as the Sierpinski gasket) in which conductance increases with increasing M(B). We explain this behavior by studying the distribution of shortest paths between the two points on clusters with a given M(B). We also study the dependence of conductance on M(B) above the percolation threshold and find that (i) slightly above p(c), the conductance first decreases and then increases with increasing M(B) and (ii) further above p(c), the conductance increases monotonically for all values of M(B), as is the case for homogeneous systems.

2.
Article in English | MEDLINE | ID: mdl-11088180

ABSTRACT

We study the multifractal spectrum of the current in the two-dimensional random resistor network at the percolation threshold. We consider two ways of applying the voltage difference: (i) two parallel bars, and (ii) two points. Our numerical results suggest that in the infinite system limit, the probability distribution behaves for small i as P(i) approximately 1/i, where i is the current. As a consequence, the moments of i of order q

3.
Article in English | MEDLINE | ID: mdl-11088970

ABSTRACT

We analyze nonstationary 137Cs atmospheric activity concentration fluctuations measured near Chernobyl after the 1986 disaster and find three new results: (i) the histogram of fluctuations is well described by a log-normal distribution; (ii) there is a pronounced spectral component with period T=1yr, and (iii) the fluctuations are long-range correlated. These findings allow us to quantify two fundamental statistical properties of the data: the probability distribution and the correlation properties of the time series. We interpret our findings as evidence that the atmospheric radionuclide resuspension processes are tightly coupled to the surrounding ecosystems and to large time scale weather patterns.

4.
Article in English | MEDLINE | ID: mdl-11138125

ABSTRACT

We study the flow of fluid in porous media in dimensions d=2 and 3. The medium is modeled by bond percolation on a lattice of L(d) sites, while the flow front is modeled by tracer particles driven by a pressure difference between two fixed sites ("wells") separated by Euclidean distance r. We investigate the distribution function of the shortest path connecting the two sites, and propose a scaling ansatz that accounts for the dependence of this distribution (i) on the size of the system L and (ii) on the bond occupancy probability p. We confirm by extensive simulations that the ansatz holds for d=2 and 3. Further, we study two dynamical quantities: (i) the minimal traveling time of a tracer particle between the wells when the total flux is constant and (ii) the minimal traveling time when the pressure difference is constant. A scaling ansatz for these dynamical quantities also includes the effect of finite system size L and off-critical bond occupation probability p. We find that the scaling form for the distribution functions for these dynamical quantities for d=2 and 3 is similar to that for the shortest path, but with different critical exponents. Our results include estimates for all parameters that characterize the scaling form for the shortest path and the minimal traveling time in two and three dimensions; these parameters are the fractal dimension, the power law exponent, and the constants and exponents that characterize the exponential cutoff functions.

5.
Phys Rev Lett ; 76(11): 1979-1981, 1996 Mar 11.
Article in English | MEDLINE | ID: mdl-10060574
6.
Phys Rev Lett ; 76(12): 2192-2195, 1996 Mar 18.
Article in English | MEDLINE | ID: mdl-10060629
9.
Phys Rev Lett ; 74(21): 4205-4208, 1995 May 22.
Article in English | MEDLINE | ID: mdl-10058442
13.
Phys Rev Lett ; 71(11): 1776, 1993 Sep 13.
Article in English | MEDLINE | ID: mdl-10054495
14.
Phys Rev A ; 45(12): R8313-R8316, 1992 Jun 15.
Article in English | MEDLINE | ID: mdl-9907010
15.
Phys Rev A ; 43(12): 7113-7116, 1991 Jun 15.
Article in English | MEDLINE | ID: mdl-9905077
SELECTION OF CITATIONS
SEARCH DETAIL
...