Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ear Hear ; 21(5): 443-61, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11059703

ABSTRACT

OBJECTIVES: 1) To describe broad bandwidth measurements of acoustic admittance (Y) and energy reflectance (R) in the ear canals of neonates. 2) To describe a means for evaluating when a YR response is valid. 3) To describe the relations between these YR measurements and age, gender, left/right ear, and selected risk factors. DESIGN: YR responses were obtained at four test sites in well babies without risk indicators, well babies with at least one risk indicator, and graduates of neonatal intensive care units. YR responses were measured using a chirp stimulus at moderate levels over a frequency range from 250 to 8000 Hz. The system was calibrated based on measurements in a set of cylindrical tubes. The probe assembly was inserted in the ear canal of the neonate, and customized software was used for data acquisition. RESULTS: YR responses were measured in over 4000 ears, and half of the responses were used in exploratory data analyses. The particular YR variables chosen for analysis were energy reflectance, equivalent volume and acoustic conductance. Based on the view that unduly large negative equivalent volumes at low frequencies were physically impossible, it was concluded that approximately 13% of the YR responses showed evidence of improper probe seal in the ear canal. To test how these outliers influenced the overall pattern of YR responses, analyses were conducted both on the full data set (N = 2081) and the data set excluding outliers (N = 1825). The YR responses averaged over frequency varied with conceptional age (conception to date of test), gender, left/right ear, and selected risk factors; in all cases, significant effects were observed more frequently in the data set excluding outliers. After excluding outliers and controlling for conceptional age effects, the dichotomous risk factors accounting for the greatest variance in the YR responses were, in rank order, cleft lip and palate, aminoglycoside therapy, low birth weight, history of ventilation, and low APGAR scores. In separate analyses, YR responses varied in the first few days after birth. An analysis showed that the use of a YR test criterion to assess the quality of probe seal may help control the false-positive rate in evoked otoacoustic emission testing. CONCLUSIONS: This is the first report of wideband YR responses in neonates. Data were acquired in a few seconds, but the responses are highly sensitive to whether the probe is fully sealed in the ear canal. A real-time acoustic test of probe fit is proposed to better address the probe seal problem. The YR responses provide information on middle-ear status that varies over the neonatal age range and that is sensitive to the presence or absence of risk factors, ear, and gender differences. Thus, a YR test may have potential for use in neonatal screening tests for hearing loss.


Subject(s)
Ear Canal/anatomy & histology , Hearing Disorders/diagnosis , Hearing Disorders/epidemiology , Neonatal Screening , Acoustics , Auditory Perception/physiology , Female , Hearing Disorders/physiopathology , Humans , Infant , Infant, Newborn , Male , Otoacoustic Emissions, Spontaneous/physiology , Risk Factors
2.
J Acoust Soc Am ; 95(1): 355-71, 1994 Jan.
Article in English | MEDLINE | ID: mdl-8120247

ABSTRACT

The diffuse-field pressure transfer function from a reverberant field to the ear canal of human infants, ages 1, 3, 6, 12, and 24 months, has been measured from 125-10700 Hz. The source was a loudspeaker using pink noise, and the diffuse-field pressure and the ear-canal pressure were simultaneously measured using a spatial averaging technique in a reverberant room. The results in most subjects show a two-peak structure in the 2-6-kHz range, corresponding to the ear-canal and concha resonances. The ear-canal resonance frequency decreases from 4.4 kHz at age 1 month to 2.9 kHz at age 24 months. The concha resonance frequency decreases from 5.5 kHz at age 1 month to 4.5 kHz at age 24 months. Below 2 kHz, the diffuse-field transfer function shows effects due to the torsos of the infant and parent, and varies with how the infant is held. Comparisons are reported of the diffuse-field absorption cross section for infants relative to adults. This quantity is a measure of power absorbed by the middle ear from a diffuse sound field, and large differences are observed in infants relative to adults. The radiation efficiencies of the infant and the adult ear are small at low frequencies, near unity at midfrequencies, and decrease at higher frequencies. The process of ear-canal development is not yet complete at age 24 months. The results have implications for experiments on hearing in infants.


Subject(s)
Ear Canal/physiology , Hearing/physiology , Infant , Age Factors , Ear, External/physiology , Female , Humans , Longitudinal Studies , Male , Orientation/physiology , Pitch Perception/physiology , Reference Values , Sound Localization/physiology , Sound Spectrography , Transducers, Pressure
3.
J Acoust Soc Am ; 94(5): 2617-38, 1993 Nov.
Article in English | MEDLINE | ID: mdl-8270739

ABSTRACT

The ear-canal impedance and reflection coefficient were measured in an adult group and in groups of infants of age 1, 3, 6, 12, and 24 months over frequency range 125-10,700 Hz. The development of the external ear canal and middle ear strongly affect input impedance and reflection coefficient responses, and this development is not yet complete at age 24 months. Contributing factors include growth of the area and length of the ear canal, a resonance in the ear-canal walls of younger infants, and a probable influence of growth of the middle-ear cavities. The middle-ear compliance is lower in infants than adults, and the middle-ear resistance is higher. The power transfer into the middle ear of the infant is much less than into that of the adult. Such differences in power transfer directly influence both behavioral and physiological measurements of hearing. The difficulties of interpretation of neonatal tympanograms are shown to be a consequence of ear-canal wall vibration. Impedance and reflectance measurements in the 2-4-kHz range are recommended as a potentially useful clinical tool for circumventing these difficulties.


Subject(s)
Acoustic Impedance Tests , Ear, External/physiology , Speech Perception , Acoustic Stimulation , Adult , Age Factors , Auditory Threshold , Ear, External/anatomy & histology , Ear, Middle/physiology , Female , Hearing/physiology , Humans , Infant , Infant, Newborn , Longitudinal Studies , Male , Speech Acoustics
4.
Hear Res ; 67(1-2): 117-27, 1993 May.
Article in English | MEDLINE | ID: mdl-8340262

ABSTRACT

Two types of measurements were performed on a subject able to voluntarily contract her middle ear muscles (MEM). First, wideband measurements (0-11 kHz) of middle ear input impedance and energy reflectance were obtained when the subject was relaxed and when she contracted her MEM. The changes in impedance observed with voluntary MEM contraction were similar to those reported in the literature for acoustically-elicited MEM contractions. The energy reflectance increased for frequencies below about 4 kHz. Second, the effects of voluntary MEM contraction on the frequencies and levels of spontaneous otoacoustic emissions (SOAEs) were measured and compared to effects evoked by contralateral acoustic stimulation. Effects on SOAEs appear to be a more sensitive indicator of MEM activity than changes in impedance, and the effects due to voluntary MEM contraction were qualitatively similar to those evoked by contralateral acoustic stimulation. These results suggest that in subjects with normally-functioning middle ears, only some effects on otoacoustic emissions caused by contralateral stimuli whose levels are below the contralateral acoustic reflex threshold can be unequivocally attributed to the action of cochlear efferents. The temporal aspects of SOAE frequency shifts caused by voluntary contraction of MEM show that voluntary contraction fatigues rapidly over a time period of tens of seconds.


Subject(s)
Ear, Middle/physiology , Muscle Contraction/physiology , Otoacoustic Emissions, Spontaneous/physiology , Acoustic Impedance Tests , Acoustic Stimulation , Adult , Female , Humans
5.
J Acoust Soc Am ; 91(1): 470-85, 1992 Jan.
Article in English | MEDLINE | ID: mdl-1737890

ABSTRACT

A frequency-domain based system for measuring acoustic impedance and reflection coefficient is described. The calibration procedure uses a least-mean-squares approximation to the Thevenin parameters describing the source and receiver characteristics in which the data measured on closed, cylindrical tubes are matched to a viscothermal tube model. The system is intended for use in acoustical measurement in human ear canals, in which the cross-sectional area of the ear canal at the point of insertion is imprecisely known. This area is acoustically estimated from the impedance data, and the reflection coefficient is calculated in terms of this area and the impedance data. Measurements on a variety of closed tubes show the method is accurate over the frequency range investigated (less than 10.7 kHz). The time-domain reflection function is evaluated by transforming the reflection coefficient from the frequency domain, but the finite bandwidth of the measured data limits the accuracy of time-domain response measurements. The method is well suited for frequency-domain measurements in human ear canals.


Subject(s)
Acoustic Impedance Tests/methods , Acoustics , Acoustic Impedance Tests/instrumentation , Ear Canal , Humans , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...