Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 58(15): 10129-10138, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31310108

ABSTRACT

A series of 16 "3 + 2" mixed-ligand complexes of the general composition [ReO(L1)(L2)] (H2L1a-H2L1d = tridentate thiosemicarbazones having a phenyl group with 4-H, 4-F, 3,5-di-F, and 4-CF3 substituents; HL2a-HL2d = bidentate N,N-diethyl-N'-benzoylthioureas with 4-H, 4-F, 3,5-di-F, and 4-CF3 substituents at the benzoyl groups) have been synthesized and characterized by spectroscopic methods and X-ray diffraction. Irrespective of the individual fluorine substitution, the complexes are stable and possess the same general structure. Some systematic electronic effects of the fluorine-substitution patterns of the ligands have been found on the 13C NMR chemical shifts of the N-C═N carbon atoms of the {L1}2- and the C═O carbon atoms of the {L2}- ligands. Antiparasitic properties of the rhenium complexes have been tested against epimastigotes and trypomastigotes forms of two Trypanosoma cruzi strains and the amastigotes form of one of them. The results of this study indicate that the activity of the rhenium complexes can clearly be modulated by fluorine substitution of their ligands. Some of the fluorinated compounds show a high activity against epimastigotes and trypomastigotes forms of the parasites. Reactions between (NBu4)[TcOCl4] and two representatives of the fluorinated ligands (H2L1b, 4-F-substituted, and H2L1c, 4-CF3-substituted) form stable complexes of the composition [TcOCl(L1b)] and [TcOCl(L1c)]. Subsequent reactions of these products with HL2b (4-F-substituted) give the corresponding [TcO(L1)(L2)] mixed-ligand complexes. Also, the technetium compounds are stable as solids and in solutions and have structures corresponding to those of their rhenium analogues.


Subject(s)
Coordination Complexes/pharmacology , Halogenation , Rhenium/pharmacology , Thiosemicarbazones/pharmacology , Thiourea/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cell Survival/drug effects , Cells, Cultured , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Crystallography, X-Ray , Haplorhini , Ligands , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Rhenium/chemistry , Thiosemicarbazones/chemistry , Thiourea/chemistry , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
2.
Biomed Res Int ; 2019: 8301569, 2019.
Article in English | MEDLINE | ID: mdl-31355283

ABSTRACT

Chagas disease is a tropical illness caused by the protozoan Trypanosoma cruzi. The disease affects populations of the Americas and has been spread to other continents due to the migration process. The disease is partially controlled by two drugs, Benznidazole and Nifurtimox. These molecules are active in the acute phase of the infection but are usually ineffective during the symptomatic chronic phase. Several research groups have developed novel candidates to control Chagas disease; however, no novel commercial formulation is available. In this article, we described the anti-T. cruzi effects of phenothiazinium dyes in amastigote and trypomastigote forms of the parasite. Methylene Blue, New Methylene Blue, Toluidine Blue O, and 1,9-Dimethyl Methylene Blue inhibited the parasite proliferation at nanomolar concentrations and also demonstrated low toxicity in host cells. Moreover, combinations of phenothiazinium dyes indicated a synergic pattern against amastigotes compared to the Benznidazole counterparts. Phenothiazinium dyes levels of reactive oxygen species (ROS) and decreased the mitochondrial potential in trypomastigotes, indicating the mechanism of action of the dyes in T. cruzi. Our article offers a basis for future strategies for the control of Chagas disease using low-cost formulations, an important point for endemic underdeveloped regions.


Subject(s)
Cell Proliferation/drug effects , Chagas Disease/drug therapy , Phenothiazines/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cell Line , Chagas Disease/parasitology , Coloring Agents/pharmacology , Humans , Methylene Blue/analogs & derivatives , Methylene Blue/pharmacology , Nifurtimox/pharmacology , Nitroimidazoles/pharmacology , Tolonium Chloride/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...