Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 9: 2532, 2018.
Article in English | MEDLINE | ID: mdl-30410474

ABSTRACT

Clostridioides difficile infection (CDI) causes severe inflammatory responses at the intestinal mucosa but the immunological mechanisms underlying CDI-related immunopathology are still incompletely characterized. Here we identified for the first time that both, non-toxigenic strains as well as the hypervirulent ribotypes RT027 and RT023 of Clostridioides difficile (formerly Clostridium difficile), induced an effector phenotype in mucosal-associated invariant T (MAIT) cells. MAIT cells can directly respond to bacterial infections by recognizing MR1-presented metabolites derived from the riboflavin synthesis pathway constituting a novel class of antigens. We confirmed functional riboflavin synthesis of C. difficile and found fixed bacteria capable of activating primary human MAIT cells in a dose-dependent manner. C. difficile-activated MAIT cells showed an increased and MR1-dependent expression of CD69, proinflammatory IFNγ, and the lytic granule components granzyme B and perforin. Effector protein expression was accompanied by the release of lytic granules, which, in contrast to other effector functions, was mainly induced by IL-12 and IL-18. Notably, this study revealed hypervirulent C. difficile strains to be most competent in provoking MAIT cell responses suggesting MAIT cell activation to be instrumental for the immunopathology observed in C. difficile-associated colitis. In conclusion, we provide first evidence for a link between C. difficile metabolism and innate T cell-mediated immunity in humans.

2.
Eur J Immunol ; 48(8): 1336-1349, 2018 08.
Article in English | MEDLINE | ID: mdl-29749611

ABSTRACT

Mucosal-associated invariant T cells (MAIT) constitute the most abundant anti-bacterial CD8+ T-cell population in humans. MR1/TCR-activated MAIT cells were reported to organize cytotoxic and innate-like responses but knowledge about their molecular effector phenotype is still fragmentary. Here, we have examined the functional inventory of human MAIT cells (CD3+ Vα7.2+ CD161+ ) in comparison with those from conventional non-MAIT CD8+ T cells (cCD8+ ) and NK cells. Quantitative mass spectrometry characterized 5500 proteins of primary MAIT cells and identified 160 and 135 proteins that discriminate them from cCD8+ T cells and NK cells donor-independently. Most notably, MAIT cells showed a unique exocytosis machinery in parallel to a proinflammatory granzyme profile with high levels of the granzymes A, K, and M. Furthermore, 24 proteins were identified with highest abundances in MAIT cells, including CD26, CD98, and L-amino-oxidase (LAAO). Among those, expression of granzyme K and CD98 were validated as MAIT-specific with respect to non-MAIT CD8+ effector subsets and LAAO was found to be recruited together with granzymes, perforin, and CD107a at the immunological synapse of activated MAIT cells. In conclusion, this study complements knowledge on the molecular effector phenotype of MAIT cells and suggest novel immune regulatory functions as part of their cytotoxic responses.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Exocytosis/physiology , Killer Cells, Natural/immunology , Mucosal-Associated Invariant T Cells/immunology , Proteome/analysis , Biomarkers/analysis , Cells, Cultured , Dipeptidyl Peptidase 4/metabolism , Fusion Regulatory Protein-1/metabolism , Granzymes/metabolism , Humans , L-Amino Acid Oxidase/metabolism , Lysosomal-Associated Membrane Protein 1/metabolism , Mass Spectrometry , Proteomics
3.
Front Immunol ; 4: 66, 2013.
Article in English | MEDLINE | ID: mdl-23508354

ABSTRACT

Natural killer (NK) cells are part of the innate immune response and play a crucial role in the defense against tumors and virus-infected cells. Their effector functions include the specific killing of target cells, as well as the modulation of other immune cells by cytokine release. Kinases constitute a relevant part in signaling, are prime targets in drug research and the protein kinase inhibitor Dasatinib is already used for immune-modulatory therapies. In this study, we tested the effects of the kinase inhibitors CK59 and CID755673. These inhibitors are directed against calmodulin kinase II (CaMKII; CK59) and PKD family kinases (CID755673) that were previously suggested as novel components of NK activation pathways. Here, we use a multi-parameter, FACS-based assay to validate the influence of CK59 and CID755673 on the effector functions of primary NK cells. Treatment with CK59 and CID755673 indeed resulted in a significant dose-dependent reduction of NK cell degranulation markers and cytokine release in freshly isolated Peripheral blood mononuclear cell populations from healthy blood donors. These results underline the importance of CaMKII for NK cell signaling and suggest protein kinase D2 as a novel signaling component in NK cell activation. Notably, kinase inhibition studies on pure NK cell populations indicate significant donor variations.

4.
Mol Cell Proteomics ; 12(5): 1099-114, 2013 May.
Article in English | MEDLINE | ID: mdl-23315794

ABSTRACT

The recent Natural Killer (NK) cell maturation model postulates that CD34(+) hematopoietic stem cells (HSC) first develop into CD56(bright) NK cells, then into CD56(dim)CD57(-) and finally into terminally maturated CD56(dim)CD57(+). The molecular mechanisms of human NK cell differentiation and maturation however are incompletely characterized. Here we present a proteome analysis of distinct developmental stages of human primary NK cells, isolated from healthy human blood donors. Peptide sequencing was used to comparatively analyze CD56(bright) NK cells versus CD56(dim) NK cells and CD56(dim)CD57(-) NK cells versus CD56(dim)CD57(+) NK cells and revealed distinct protein signatures for all of these subsets. Quantitative data for about 3400 proteins were obtained and support the current differentiation model. Furthermore, 11 donor-independently, but developmental stage specifically regulated proteins so far undescribed in NK cells were revealed, which may contribute to NK cell development and may elucidate a molecular source for NK cell effector functions. Among those proteins, S100A4 (Calvasculin) and S100A6 (Calcyclin) were selected to study their dynamic subcellular localization. Upon activation of human primary NK cells, both proteins are recruited into the immune synapse (NKIS), where they colocalize with myosin IIa.


Subject(s)
Killer Cells, Natural/physiology , Proteome/metabolism , Amino Acid Sequence , CD56 Antigen/metabolism , CD57 Antigens/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Differentiation , Cell Separation , Cells, Cultured , Humans , Immunological Synapses/metabolism , Lymphocyte Activation , Molecular Sequence Annotation , Molecular Sequence Data , Nonmuscle Myosin Type IIA/metabolism , Protein Transport , Proteome/chemistry , S100 Calcium Binding Protein A6 , S100 Calcium-Binding Protein A4 , S100 Proteins/chemistry , S100 Proteins/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...