Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
MethodsX ; 9: 101744, 2022.
Article in English | MEDLINE | ID: mdl-35692732

ABSTRACT

Ulcerative colitis (UC) is a gastrointestinal, autoimmune disease that causes ulceration and inflammation of the colon with an incidence of 10 out of every 100,000 people in North America and Western Europe. Though the specific cause is unknown, several studies have demonstrated that inflammatory cells as well as environmental variables, genetics, and lifestyle behaviors can play a role in the long-term inflammatory response. Researchers have commonly used immunohistochemistry, western blotting and gene sequencing to establish the cellular processes behind UC relapse and remission. However, because these destructive methods necessitate the removal of a sample, they can only be used on non-living tissues. The use of minimally invasive approaches to evaluate the in vivo, longitudinal effects of UC on the mucosa in the colon is gaining popularity among clinicians and researchers. We have created a dextran sulfate sodium-induced model of UC in C57 mice based on the work of Wirtz et al., and a minimally invasive imaging modality to explore the changes in mucosal tissue during "active" and "in remission" UC. Briefly, C57 mice were given dextran sulfate sodium (DSS) dissolved in water in 5-day cycles with a remission/recovery period of 10 days. After 7 days post-DSS treatment and 7 days post-recovery, mice were anesthetized and exploratory endoscopies were performed to assess the mucosal changes that occur during the "active" and "remission" periods of UC. Value of protocol:•Minimally invasive induction of ulcerative colitis in a murine mouse model.•Minimally invasive longitudinal monitoring of "active" and "in remission" ulcerative colitis.•Our endoscopic based imaging modality can be used to validate the induction of ulcerative colitis and the potential treatment response for pre-clinical trials.

3.
J Biomed Opt ; 25(3): 1-16, 2020 03.
Article in English | MEDLINE | ID: mdl-32141266

ABSTRACT

SIGNIFICANCE: Many studies in colorectal cancer (CRC) use murine ectopic tumor models to determine response to treatment. However, these models do not replicate the tumor microenvironment of CRC. Physiological information of treatment response derived via diffuse reflectance spectroscopy (DRS) from murine primary CRC tumors provide a better understanding for the development of new drugs and dosing strategies in CRC. AIM: Tumor response to chemotherapy in a primary CRC model was quantified via DRS to extract total hemoglobin content (tHb), oxygen saturation (StO2), oxyhemoglobin, and deoxyhemoglobin in tissue. APPROACH: A multimodal DRS and imaging probe (0.78 mm outside diameter) was designed and validated to acquire diffuse spectra longitudinally-via endoscopic guidance-in developing colon tumors under 5-fluoruracil (5-FU) maximum-tolerated (MTD) and metronomic regimens. A filtering algorithm was developed to compensate for positional uncertainty in DRS measurements Results: A maximum increase in StO2 was observed in both MTD and metronomic chemotherapy-treated murine primary CRC tumors at week 4 of neoadjuvant chemotherapy, with 21 ± 6 % and 17 ± 6 % fold changes, respectively. No significant changes were observed in tHb. CONCLUSION: Our study demonstrates the feasibility of DRS to quantify response to treatment in primary CRC models.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/drug therapy , Disease Models, Animal , Fluorouracil/therapeutic use , Optical Imaging/methods , Spectrophotometry/methods , Animals , Biomarkers, Tumor/analysis , Colorectal Neoplasms/chemistry , Disease Progression , Female , Hemoglobins/analysis , Mice , Mice, Inbred A , Oxygen/analysis , Precancerous Conditions/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...