Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Invest ; 86(10): 1052-63, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16909128

ABSTRACT

Intestinal epithelial cells migrate from the base of the crypt to the villi where they are shed. However, little is known about the cell shedding process. We have studied the role of apoptosis and wound healing mechanisms in cell shedding from human small intestinal epithelium. A method preparing paraffin sections of human small intestine that preserves cell shedding was developed. A total of 14 417 villus sections were studied. The relationship of cell shedding to leukocytes (CD45), macrophages (CD68) and blood vessels (CD34) were studied by immunohistochemistry. Apoptotic cells were identified using the M30 antibody against cleaved cytokeratin 18 and an antibody against cleaved caspase-3. Potential wound healing mechanisms were studied using antibodies against Zona Occludens-1 (ZO-1) and phosphorylated myosin light chains (MLCs). We found that 5.3% of villus sections contained a shedding cell. An eosin-positive gap was often seen within the epithelial monolayer beneath shedding cells. Shedding was not associated with leukocytes, macrophages or blood vessels. Cells always underwent apoptosis during ejection from the monolayer. Apoptotic bodies were never seen in the monolayer but morphologically normal cells that were positive for M30 or cleaved caspase-3 were often seen. ZO-1 protein was usually (41/42) localized to the apical pole of cells neighboring a shedding event. Phosphorylated MLCs could be identified in 50% of shedding events. In conclusion, cell shedding is associated with apoptosis though it remains unclear whether apoptosis initiates shedding. It is also associated with phosphorylation of MLCs; a process associated previously with wound healing.


Subject(s)
Anoikis/physiology , Apoptosis/physiology , Ileum/cytology , Intestinal Mucosa/cytology , Tissue Fixation/methods , Adult , Aged , Female , Humans , Male , Membrane Proteins/metabolism , Middle Aged , Myosin Light Chains/metabolism , Phosphoproteins/metabolism , Sulfonamides , Wound Healing , Zonula Occludens-1 Protein , beta-Alanine/analogs & derivatives
2.
Gastroenterology ; 129(3): 902-12, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16143130

ABSTRACT

BACKGROUND & AIMS: Epithelial cells of the small intestine migrate to the tip of the villus at which they are shed. It is not understood how the intestinal barrier is maintained during this high cell turnover. The aim of this study was to use high-resolution in vivo light microscopy to investigate the mechanism of epithelial shedding and the site of the permeability barrier during cell shedding. METHODS: A laparotomy was performed on anesthetized mice, and a segment of small intestine was opened. The exposed epithelial surface of the intestine was imaged by multiphoton microscopy. Nuclei, cytosol, and cell membranes were imaged using the dyes Hoescht 33258, BCECF, a transgenically expressed fluorescent protein, and the membrane dye DiI. The fluorescent caspase substrate PhiPhiLux was used to detect apoptosis. RESULTS: In the epithelial monolayer, gaps were observed that lacked nuclei or cytosol but appeared to be filled with an impermeable substance. Studies with membrane impermeant fluorophores (Lucifer Yellow and Alexa-dextran) showed that the impermeable substance completely fills the void left by the absent cell. Only a fraction of gaps have either ZO-1 staining or cytoplasmic extensions from neighboring cells at the basal pole. Time-lapse studies reveal that cell shedding results in genesis of a gap and that shedding usually occurs prior to detectable cellular activation of caspase 3 or nuclear condensation. CONCLUSIONS: Results suggest that epithelial barrier function is sustained at the apical pole of the epithelial layer, despite discontinuities in the cellular layer.


Subject(s)
Intestinal Mucosa/cytology , Intestinal Mucosa/physiology , Animals , Hydrogen-Ion Concentration , Immunohistochemistry , Intestinal Mucosa/surgery , Mice , Microvilli/physiology , Microvilli/ultrastructure , Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...