Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Virol ; 165(3): 671-681, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31942645

ABSTRACT

Dengue virus (DENV) is the most common mosquito-borne viral disease. The World Health Organization estimates that 400 million new cases of dengue fever occur every year. Approximately 500,000 individuals develop severe and life-threatening complications from dengue fever, such as dengue shock syndrome (DSS) and dengue hemorrhagic fever (DHF), which cause 22,000 deaths yearly. Currently, there are no specific licensed therapeutics to treat DENV illness. We have previously shown that the MEK/ERK inhibitor U0126 inhibits the replication of the flavivirus yellow fever virus. In this study, we demonstrate that the MEK/ERK inhibitor AZD6244 has potent antiviral efficacy in vitro against DENV-2, DENV-3, and Saint Louis encephalitis virus (SLEV). We also show that it is able to protect AG129 mice from a lethal challenge with DENV-2 (D2S20). The molecule is currently undergoing phase III clinical trials for the treatment of non-small-cell lung cancer. The effect of AZD6244 on the DENV life cycle was attributed to a blockade of morphogenesis. Treatment of AG129 mice twice daily with oral doses of AZD6244 (100 mg/kg/day) prevented the animals from contracting dengue hemorrhagic fever (DHF)-like lethal disease upon intravenous infection with 1 × 105 PFU of D2S20. The effectiveness of AZD6244 was observed even when the treatment of infected animals was initiated 1-2 days postinfection. This was also followed by a reduction in viral copy number in both the serum and the spleen. There was also an increase in IL-1ß and TNF-α levels in mice that were infected with D2S20 and treated with AZD6244 in comparison to infected mice that were treated with the vehicle only. These data demonstrate the potential of AZD6244 as a new therapeutic agent to treat DENV infection and possibly other flavivirus diseases.


Subject(s)
Antiviral Agents/therapeutic use , Benzimidazoles/therapeutic use , Dengue Virus/growth & development , Severe Dengue/prevention & control , Animals , Cell Line , Cricetinae , Dengue Virus/drug effects , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Interleukin-1beta/blood , Mice , Severe Dengue/virology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/blood
2.
PLoS Negl Trop Dis ; 9(6): e0003850, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26086739

ABSTRACT

Monkeypox virus (MPXV) is the etiological agent of human (MPX). It is an emerging orthopoxvirus zoonosis in the tropical rain forest of Africa and is endemic in the Congo-basin and sporadic in West Africa; it remains a tropical neglected disease of persons in impoverished rural areas. Interaction of the human population with wildlife increases human infection with MPX virus (MPXV), and infection from human to human is possible. Smallpox vaccination provides good cross-protection against MPX; however, the vaccination campaign ended in Africa in 1980, meaning that a large proportion of the population is currently unprotected against MPXV infection. Disease control hinges on deterring zoonotic exposure to the virus and, barring that, interrupting person-to-person spread. However, there are no FDA-approved therapies against MPX, and current vaccines are limited due to safety concerns. For this reason, new studies on pathogenesis, prophylaxis and therapeutics are still of great interest, not only for the scientific community but also for the governments concerned that MPXV could be used as a bioterror agent. In the present study, a new vaccination strategy approach based on three recombinant bovine herpesvirus 4 (BoHV-4) vectors, each expressing different MPXV glycoproteins, A29L, M1R and B6R were investigated in terms of protection from a lethal MPXV challenge in STAT1 knockout mice. BoHV-4-A-CMV-A29LgD106ΔTK, BoHV-4-A-EF1α-M1RgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK were successfully constructed by recombineering, and their capacity to express their transgene was demonstrated. A small challenge study was performed, and all three recombinant BoHV-4 appeared safe (no weight-loss or obvious adverse events) following intraperitoneal administration. Further, BoHV-4-A-EF1α-M1RgD106ΔTK alone or in combination with BoHV-4-A-CMV-A29LgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK, was shown to be able to protect, 100% alone and 80% in combination, STAT1(-/-) mice against mortality and morbidity. This work demonstrated the efficacy of BoHV-4 based vectors and the use of BoHV-4 as a vaccine-vector platform.


Subject(s)
Antigens, Viral/immunology , Herpesvirus 4, Bovine/physiology , Monkeypox virus/immunology , Mpox (monkeypox)/prevention & control , STAT1 Transcription Factor/metabolism , Viral Vaccines/immunology , Amino Acid Sequence , Animals , Base Sequence , Cattle , Cell Line , Gene Expression Regulation , Genetic Vectors , Herpesvirus 4, Bovine/immunology , Humans , Mice , Mice, Knockout , Molecular Sequence Data , STAT1 Transcription Factor/genetics , Transfection , Viral Vaccines/genetics
3.
Microbes Infect ; 16(1): 73-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24120457

ABSTRACT

A better understanding of mucosal immunity is required to develop more protective vaccines against Mycobacterium tuberculosis. We developed a murine aerosol challenge model to investigate responses capable of protecting against mucosal infection. Mice received vaccinations intranasally with CpG-adjuvanted antigen 85B (Ag85B/CpG) and/or Bacillus Calmette-Guerin (BCG). Protection against aerosol challenge with a recombinant GFP-expressing BCG was assessed. Mucosal prime/boost vaccinations with Ag85B/CpG and BCG were protective, but did not prevent lung infection indicating more efficacious mucosal vaccines are needed. Our novel finding that protection correlated with increased airway dendritic cells early post-challenge could help guide the development of enhanced mucosal vaccines.


Subject(s)
Immunity, Mucosal , Mycobacterium tuberculosis/immunology , Tuberculosis Vaccines/immunology , Tuberculosis/prevention & control , Animals , BCG Vaccine/administration & dosage , BCG Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Mice , Respiratory Mucosa/immunology , Respiratory Mucosa/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...