Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(23): 24574-24583, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882165

ABSTRACT

Silver ions are antimicrobial agents with powerful action against bacteria. Applications in surface treatments, as Ag+-functionalized sol-gel coatings, are expected in the biomedical field to prevent contaminations and infections. The potential cytotoxicity of Ag+ cations toward human cells is well known though. However, few studies consider both the bactericidal activity and the biocompatibility of the Ag+-functionalized sol-gels. Here, we demonstrate that the cytotoxicity of Ag+ cations is circumvented, thanks to the ability of Ag+ cations to kill Escherichia coli (E. coli) much faster than normal human dermal fibroblasts (NHDFs). This phenomenon was investigated in the case of two silver nitrate-loaded sol-gel coatings: one with 0.5 w/w% Ag+ cations and the second with 2.5 w/w%. The maximal amount of released Ag+ ions over time (0.25 mg/L) was ten times lower than the minimal inhibition (MIC) and minimal bactericidal (MBC) concentrations (respectively, 2.5 and 16 mg/L) for E. coli and twice lower to the minimal cytotoxic concentration (0.5 mg/L) observed in NHDFs. E. coli were killed 8-18 times, respectively, faster than NHDFs by silver-loaded sol-gel coatings. This original approach, based on the kinetic control of the biological activity of Ag+ cations instead of a concentration effect, ensures the bactericidal protection while maintaining the biocompatibility of the Ag+ cation-functionalized sol-gels. This opens promising applications of silver-loaded sol-gel coatings for biomedical tools in short-term or indirect contacts with the skin.

2.
Arch Microbiol ; 205(7): 272, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37391548

ABSTRACT

In the COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), face masks have become a very important safety measure against the main route of transmission of the virus: droplets and aerosols. Concerns that masks contaminated with SARS-CoV-2 infectious particles could be a risk for self-contamination have emerged early in the pandemic as well as solutions to mitigate this risk. The coating of masks with sodium chloride, an antiviral and non-hazardous to health chemical, could be an option for reusable masks. To assess the antiviral properties of salt coatings deposited onto common fabrics by spraying and dipping, the present study established an in vitro bioassay using three-dimensional airway epithelial cell cultures and SARS-CoV-2 virus. Virus particles were given directly on salt-coated material, collected, and added to the cell cultures. Infectious virus particles were measured by plaque forming unit assay and in parallel viral genome copies were quantified over time. Relative to noncoated material, the sodium chloride coating significantly reduced virus replication, confirming the effectiveness of the method to prevent fomite contamination with SARS-CoV-2. In addition, the lung epithelia bioassay proved to be suitable for future evaluation of novel antiviral coatings.


Subject(s)
COVID-19 , Sodium Chloride , Humans , Sodium Chloride/pharmacology , SARS-CoV-2 , Pandemics , COVID-19/prevention & control , Antiviral Agents/pharmacology
3.
Sci Rep ; 12(1): 17041, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36220878

ABSTRACT

During the coronavirus disease (COVID-19) pandemic, wearing face masks in public spaces became mandatory in most countries. The risk of self-contamination when handling face masks, which was one of the earliest concerns, can be mitigated by adding antiviral coatings to the masks. In the present study, we evaluated the antiviral effectiveness of sodium chloride deposited on a fabric suitable for the manufacturing of reusable cloth masks using techniques adapted to the home environment. We tested eight coating conditions, involving both spraying and dipping methods and three salt dilutions. Influenza A H3N2 virus particles were incubated directly on the salt-coated materials, collected, and added to human 3D airway epithelial cultures. Live virus replication in the epithelia was quantified over time in collected apical washes. Relative to the non-coated material, salt deposits at or above 4.3 mg/cm2 markedly reduced viral replication. However, even for larger quantities of salt, the effectiveness of the coating remained dependent on the crystal size and distribution, which in turn depended on the coating technique. These findings confirm the suitability of salt coating as antiviral protection on cloth masks, but also emphasize that particular attention should be paid to the coating protocol when developing consumer solutions.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , COVID-19/prevention & control , Humans , In Vitro Techniques , Influenza A Virus, H3N2 Subtype , Masks , Sodium Chloride/pharmacology
4.
Opt Express ; 27(18): 25410-25419, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31510413

ABSTRACT

In this work, organic photodiodes (OPDs) based on two newly synthesized p-type dipolar small molecules are reported for application to green-light-selective OPDs. In order to reduce the blue-color absorption induced by the use of C60 as the n-type material in a bulk heterojunction (BHJ), the electron donor:electron acceptor composition ratio is tuned in the BHJ. With this light manipulation approach, the blue-wavelength external quantum efficiency (EQE) is minimized to 18% after reducing the C60 concentration in the center part of the BHJ. The two p-type molecules get a cyanine-like character with intense and sharp absorption in the green color by adjusting the strength of their donating and accepting parts and by choosing a selenophene unit as a π-linker. When combined to C60, the green-wavelength EQE reaches 70% in a complete device composed of two transparent electrodes. Finally, the optical simulation shows the good color-balance performance of hybrid full-color image sensor without an additional filter by using the developed green OPD as the top-layer in stacked device architecture.

5.
ACS Appl Mater Interfaces ; 8(39): 26143-26151, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27618933

ABSTRACT

There are growing opportunities and demands for image sensors that produce higher-resolution images, even in low-light conditions. Increasing the light input areas through 3D architecture within the same pixel size can be an effective solution to address this issue. Organic photodiodes (OPDs) that possess wavelength selectivity can allow for advancements in this regard. Here, we report on novel push-pull D-π-A dyes specially designed for Gaussian-shaped, narrow-band absorption and the high photoelectric conversion. These p-type organic dyes work both as a color filter and as a source of photocurrents with linear and fast light responses, high sensitivity, and excellent stability, when combined with C60 to form bulk heterojunctions (BHJs). The effectiveness of the OPD composed of the active color filter was demonstrated by obtaining a full-color image using a camera that contained an organic/Si hybrid complementary metal-oxide-semiconductor (CMOS) color image sensor.

6.
Nanotechnology ; 27(34): 345704, 2016 Aug 26.
Article in English | MEDLINE | ID: mdl-27420635

ABSTRACT

A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum.

7.
Sci Rep ; 5: 7708, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25578322

ABSTRACT

Complementary metal-oxide-semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor.

8.
ACS Appl Mater Interfaces ; 5(24): 13089-95, 2013 Dec 26.
Article in English | MEDLINE | ID: mdl-24274372

ABSTRACT

Green-sensitive organic photodetectors (OPDs) with high sensitivity and spectral selectivity using boron subphthalocyanine chloride (SubPc) derivatives are reported. The OPDs composed of SubPc and dicyanovinyl terthiophene derivative (DCV3T) demonstrated the highest green-sensitivity with maximum external quantum efficiency (EQE) of 62.6 % at an applied voltage of -5 V, but wide full-width-at-half-maximum (FWHM) of 211 nm. The optimized performance considering spectral selectivity was achieved from the composition of N,N-dimethyl quinacridone (DMQA) and SubPc showing the high specific detectivity (D*) of 2.34 × 10(12) cm Hz(1/2)/W, the EQE value of 60.1% at -5 V, and narrow FWHM of 131 nm. In spite of the sharp absorption property of SubPc with the maximum wavelength (λmax) at 586 nm, the EQE spectrum showed favorable green-sensitivity characterized by smooth waveform with λmax at 560 nm, which is induced from the high reflectance of SubPc centered at 605 nm. The photoresponsivity of the OPD devices was found to be consistent with their absorptance. Optimized DMQA/SubPc device showed the lowest value of blue crosstalk (0.42) and moderate red crosstalk (0.37), suggesting its promising application as a green-sensitive OPD.

9.
Nanotechnology ; 22(47): 475602, 2011 Nov 25.
Article in English | MEDLINE | ID: mdl-22057202

ABSTRACT

We report on a method for surface nano-texturing on a plastic substrate. Nano-objects with a silica nanoparticle core and a textured cobalt oxide crown are created with selectable density on the plastic substrate. The resulting dual morphology is easily tuned over large areas, either by changing the parameters directing nanoparticle deposition through electrostatic self-arrangement for nano-object density control, or the parameter directing cobalt oxide deposition for shape control. The entire process takes place at room temperature, with no chemicals harmful to the plastic substrate. The ready modulation of the dual morphology is used to control the wettability properties of the plastic film, which is covered by nano-objects.

SELECTION OF CITATIONS
SEARCH DETAIL
...