Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mon Not R Astron Soc ; 480(1): 1322-1332, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30573925

ABSTRACT

A fundamental prediction of the cold dark matter cosmology is the existence of a large number of dark subhalos around galaxies, most of which should be entirely devoid of stars. Confirming the existence of dark substructures stands among the most important empirical challenges in modern cosmology: if they are found and quantified with the mass spectrum expected, then this would close the door on a vast array of competing theories. But in order for observational programs of this kind to reach fruition, we need robust predictions. Here we explore substructure predictions for lensing using galaxy lens-like hosts at z=0.2 from the Illustris simulations both in full hydrodynamics and dark matter only. We quantify substructures more massive than ~ 109 M☉, comparable to current lensing detections derived from HST, Keck, and ALMA. The addition of full hydrodynamics reduces the overall subhalo mass function by about a factor of two. Even for the dark matter only runs, most (~85 per cent) projections through the halo of size close to an Einstein radius contain no substructures larger than 109 M☉. The fraction of empty projections through the halo rises to ~95 per cent in full physics simulations. This suggests we will likely need hundreds of strong lensing systems suitable for substructure studies, as well as predictions that include the effects of baryon physics on substructure, to properly constrain cosmological models. Fortunately, the field is poised to fulfill these requirements.

2.
Mon Not R Astron Soc ; 481(3): 4133-4157, 2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30598560

ABSTRACT

We use hydrodynamic cosmological zoom-in simulations from the Feedback in Realistic Environments project to explore the morphologies and kinematics of 15 Milky Way (MW)-mass galaxies. Our sample ranges from compact, bulge-dominated systems with 90 per cent of their stellar mass within 2.5 kpc to well-ordered discs that reach ≳15 kpc. The gas in our galaxies always forms a thin, rotation-supported disc at z = 0, with sizes primarily determined by the gas mass. For stars, we quantify kinematics and morphology both via the fraction of stars on disc-like orbits and with the radial extent of the stellar disc. In this mass range, stellar morphology and kinematics are poorly correlated with the properties of the halo available from dark matter-only simulations (halo merger history, spin, or formation time). They more strongly correlate with the gaseous histories of the galaxies: those that maintain a high gas mass in the disc after z ~ 1 develop well-ordered stellar discs. The best predictor of morphology we identify is the spin of the gas in the halo at the time the galaxy formed 1/2 of its stars (i.e. the gas that builds the galaxy). High-z mergers, before a hot halo emerges, produce some of the most massive bulges in the sample (from compact discs in gas-rich mergers), while later-forming bulges typically originate from internal processes, as satellites are stripped of gas before the galaxies merge. Moreover, most stars in z = 0 MW-mass galaxies (even z = 0 bulge stars) form in a disc: ≳60-90 per cent of stars begin their lives rotationally supported.

3.
Mon Not R Astron Soc ; 477(4): 4491-4498, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-30598559

ABSTRACT

In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (M ★ ~ 105.5-8 M☉). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction - due solely to environmental effects - of ~0.52 ± 0.26 within 1 < R/R vir < 2 of the Milky Way and M31. This is in good agreement with current observations of the Local Volume and suggests that the majority of the passive field systems observed at these distances are quenched via environmental mechanisms. Beyond 2R vir, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.

4.
Mon Not R Astron Soc ; 472(4): 4786-4796, 2017 12.
Article in English | MEDLINE | ID: mdl-30705467

ABSTRACT

We use a suite of high-resolution cosmological dwarf galaxy simulations to test the accuracy of commonly used mass estimators from Walker et al. (2009) and Wolf et al. (2010), both of which depend on the observed line-of-sight velocity dispersion and the 2D half-light radius of the galaxy, Re . The simulations are part of the Feedback in Realistic Environments (fire) project and include 12 systems with stellar masses spanning 105­107M⊙ that have structural and kinematic properties similar to those of observed dispersion-supported dwarfs. Both estimators are found to be quite accurate: MWolf∕Mtrue=0.98−0.12+0.19 and MWalker∕Mtrue=1.07−0.15+0.21, with errors reflecting the 68 per cent range over all simulations. The excellent performance of these estimators is remarkable given that they each assume spherical symmetry, a supposition that is broken in our simulated galaxies. Though our dwarfs have negligible rotation support, their 3D stellar distributions are flattened, with short-to-long axis ratios c/a ≃ 0.4­0.7. The median accuracy of the estimators shows no trend with asphericity. Our simulated galaxies have sphericalized stellar profiles in 3D that follow a nearly universal form, one that transitions from a core at small radius to a steep fall-off ∝r−42 at large r; they are well fit by Sérsic profiles in projection. We find that the most important empirical quantity affecting mass estimator accuracy is Re . Determining Re by an analytic fit to the surface density profile produces a better estimated mass than if the half-light radius is determined via direct summation.

5.
Mon Not R Astron Soc ; 472(3): 2945-2954, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-30595610

ABSTRACT

We compare a suite of four simulated dwarf galaxies formed in 1010 M☉ haloes of collisionless cold dark matter (CDM) with galaxies simulated in the same haloes with an identical galaxy formation model but a non-zero cross-section for DM self-interactions. These cosmological zoom-in simulations are part of the Feedback In Realistic Environments (fire) project and utilize the fire-2 model for hydrodynamics and galaxy formation physics. We find the stellar masses of the galaxies formed in self-interacting dark matter (SIDM) with σ/m = 1 cm2 g-1 are very similar to those in CDM (spanning M ★ ≈ 105.7-7.0 M☉) and all runs lie on a similar stellar mass-size relation. The logarithmic DM density slope (α = d log ρ/d log r) in the central 250-500 pc remains steeper than α = -0.8 for the CDM-Hydro simulations with stellar mass M ★ ~ 106.6 M☉ and core-like in the most massive galaxy. In contrast, every SIDM hydrodynamic simulation yields a flatter profile, with α > -0.4. Moreover, the central density profiles predicted in SIDM runs without baryons are similar to the SIDM runs that include fire-2 baryonic physics. Thus, SIDM appears to be much more robust to the inclusion of (potentially uncertain) baryonic physics than CDM on this mass scale, suggesting that SIDM will be easier to falsify than CDM using low-mass galaxies. Our fire simulations predict that galaxies less massive than M ★ ≲ 3 × 106 M☉ provide potentially ideal targets for discriminating models, with SIDM producing substantial cores in such tiny galaxies and CDM producing cusps.

6.
Proc Natl Acad Sci U S A ; 112(40): 12249-55, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-25646464

ABSTRACT

The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. We review the current observational and theoretical status of these "small-scale controversies." Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.

7.
Sci Technol Adv Mater ; 13(5): 055002, 2012 Oct.
Article in English | MEDLINE | ID: mdl-27877523

ABSTRACT

Suspended crystalline Ge semiconductor structures are created on a Si(001) substrate by a combination of epitaxial growth and simple patterning from the front surface using anisotropic underetching. Geometric definition of the surface Ge layer gives access to a range of crystalline planes that have different etch resistance. The structures are aligned to avoid etch-resistive planes in making the suspended regions and to take advantage of these planes to retain the underlying Si to support the structures. The technique is demonstrated by forming suspended microwires, spiderwebs and van der Pauw cross structures. We finally report on the low-temperature electrical isolation of the undoped Ge layers. This novel isolation method increases the Ge resistivity to 280 Ω cm at 10 K, over two orders of magnitude above that of a bulk Ge on Si(001) layer, by removing material containing the underlying misfit dislocation network that otherwise provides the main source of electrical conduction.

8.
Nature ; 477(7364): 301-3, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21921911

ABSTRACT

Like many galaxies of its size, the Milky Way is a disk with prominent spiral arms rooted in a central bar, although our knowledge of its structure and origin is incomplete. Traditional attempts to understand our Galaxy's morphology assume that it has been unperturbed by major external forces. Here we report simulations of the response of the Milky Way to the infall of the Sagittarius dwarf galaxy (Sgr), which results in the formation of spiral arms, influences the central bar and produces a flared outer disk. Two ring-like wrappings emerge towards the Galactic anti-Centre in our model that are reminiscent of the low-latitude arcs observed in the same area of the Milky Way. Previous models have focused on Sgr itself to reproduce the dwarf's orbital history and place associated constraints on the shape of the Milky Way gravitational potential, treating the Sgr impact event as a trivial influence on the Galactic disk. Our results show that the Milky Way's morphology is not purely secular in origin and that low-mass minor mergers predicted to be common throughout the Universe probably have a similarly important role in shaping galactic structure.

9.
Nature ; 460(7252): 237-9, 2009 Jul 09.
Article in English | MEDLINE | ID: mdl-19587765

ABSTRACT

Supernovae have been confirmed to redshift z approximately 1.7 (refs 1, 2) for type Ia (thermonuclear detonation of a white dwarf) and to z approximately 0.7 (refs 1, 3-5) for type II (collapse of the core of the star). The subclass type IIn (ref. 6) supernovae are luminous core-collapse explosions of massive stars and, unlike other types, are very bright in the ultraviolet, which should enable them to be found optically at redshifts z approximately 2 and higher. In addition, the interaction of the ejecta with circumstellar material creates strong, long-lived emission lines that allow spectroscopic confirmation of many events of this type at z approximately 2 for 3-5 years after explosion (ref. 14). Here we report three spectroscopically confirmed type IIn supernovae, at redshifts z = 0.808, 2.013 and 2.357, detected in archival data using a method designed to exploit these properties at z approximately 2. Type IIn supernovae directly probe the formation of massive stars at high redshift. The number found to date is consistent with the expectations of a locally measured stellar initial mass function, but not with an evolving initial mass function proposed to explain independent observations at low and high redshift.

10.
Nature ; 454(7208): 1096-7, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18756252

ABSTRACT

The Milky Way has at least twenty-three known satellite galaxies that shine with luminosities ranging from about a thousand to a billion times that of the Sun. Half of these galaxies were discovered in the past few years in the Sloan Digital Sky Survey, and they are among the least luminous galaxies in the known Universe. A determination of the mass of these galaxies provides a test of galaxy formation at the smallest scales and probes the nature of the dark matter that dominates the mass density of the Universe. Here we use new measurements of the velocities of the stars in these galaxies to show that they are consistent with them having a common mass of about 10(7) within their central 300 parsecs. This result demonstrates that the faintest of the Milky Way satellites are the most dark-matter-dominated galaxies known, and could be a hint of a new scale in galaxy formation or a characteristic scale for the clustering of dark matter.

SELECTION OF CITATIONS
SEARCH DETAIL
...