Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 12(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38793767

ABSTRACT

SARS-CoV-2 vaccination-induced protection against infection is likely to be affected by functional antibody features. To understand the kinetics of antibody responses in healthy individuals after primary series and third vaccine doses, sera from the recipients of the two licensed SARS-CoV-2 mRNA vaccines were assessed for circulating anti-SARS-CoV-2 spike IgG levels and avidity for up to 6 months post-primary series and 9 months after the third dose. Following primary series vaccination, anti-SARS-CoV-2 spike IgG levels declined from months 1 to 6, while avidity increased through month 6, irrespective of the vaccine received. The third dose of either vaccine increased anti-SARS-CoV-2 spike IgG levels and avidity and appeared to enhance antibody level persistence-generating a slower rate of decline in the 3 months following the third dose compared to the decline seen after the primary series alone. The third dose of both vaccines induced significant avidity increases 1 month after vaccination compared to the avidity response 6 months post-primary series vaccination (p ≤ 0.001). A significant difference in avidity responses between the two vaccines was observed 6 months post-third dose, where the BNT162b2 recipients had higher antibody avidity levels compared to the mRNA-1273 recipients (p = 0.020).

2.
J Inorg Biochem ; 203: 110907, 2020 02.
Article in English | MEDLINE | ID: mdl-31715377

ABSTRACT

In this study, 9-anthraldehyde-N(4)-methylthiosemicarbazone (MeATSC) 1 and [Co(phen)2(O2CO)]Cl·6H2O 2 (where phen = 1,10-phenanthroline) were synthesized. [Co(phen)2(O2CO)]Cl·6H2O 2 was used to produce anhydrous [Co(phen)2(H2O)2](NO3)33. Subsequently, anhydrous [Co(phen)2(H2O)2](NO3)33 was reacted with MeATSC 1 to produce [Co(phen)2(MeATSC)](NO3)3·1.5H2O·C2H5OH 4. The ligand, MeATSC 1 and all complexes were characterized by elemental analysis, FT IR, UV-visible, and multinuclear NMR (1H, 13C, and 59Co) spectroscopy, along with HRMS, and conductivity measurements, where appropriate. Interactions of MeATSC 1 and complex 4 with calf thymus DNA (ctDNA) were investigated by carrying out UV-visible spectrophotometric studies. UV-visible spectrophotometric studies revealed weak interactions between ctDNA and the analytes, MeATSC 1 and complex 4 (Kb = 8.1 × 105 and 1.6 × 104 M-1, respectively). Topoisomerase inhibition assays and cleavage studies proved that complex 4 was an efficient catalytic inhibitor of human topoisomerases I and IIα. Based upon the results obtained from the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay on 4T1-luc metastatic mammary breast cancer cells (IC50 = 34.4 ±â€¯5.2 µM when compared to IC50 = 13.75 ±â€¯1.08 µM for the control, cisplatin), further investigations into the molecular events initiated by exposure to complex 4 were investigated. Studies have shown that complex 4 activated both the apoptotic and autophagic signaling pathways in addition to causing dissipation of the mitochondrial membrane potential (ΔΨm). Furthermore, activation of cysteine-aspartic proteases3 (caspase 3) in a time- and concentration-dependent manner coupled with the ΔΨm, studies implicated the intrinsic apoptotic pathway as the major regulator of cell death mechanism.


Subject(s)
Antineoplastic Agents/chemical synthesis , Cobalt/chemistry , Coordination Complexes/chemical synthesis , Organometallic Compounds/chemical synthesis , Thiosemicarbazones/chemistry , Topoisomerase Inhibitors/chemical synthesis , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Coordination Complexes/pharmacology , DNA/chemistry , DNA Topoisomerases, Type I/chemistry , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type II/chemistry , DNA Topoisomerases, Type II/metabolism , Humans , Mice , Organometallic Compounds/pharmacology , Topoisomerase Inhibitors/pharmacology
3.
Recent Pat Nanotechnol ; 11(1): 3 - 14, 2016 02 03.
Article in English | MEDLINE | ID: mdl-27108692

ABSTRACT

Background: Nanotechnology has provided significant benefits to photodynamic therapy (PDT), which has revolutionized treatments of several diseases. The success of this versatile technique is governed by the sequential in situ generation of reactive oxygen species, after a suitable photosensitizer has been irradiated by a defined wavelength of light. While PDT provides a minimally-invasive and convenient method for the treatment of several afflictions, the efficiency of this therapeutic strategy still has potential for improvements. Several bodies of works within this realm have highlighted the use of inorganic compounds, which is pivotal for the development of photosensitizers (PSs), nanoparticles (NPs) and irradiation sources. Methods: The past decade of online patented reports based on PDT were reviewed. Results: The patented reports analyzed showcased the integration of nanomaterials and inorganic compounds into PDT. The patents were grouped according to the following categories, viz., "Nanoparticles in Photodynamic Therapy", "Photosensitizers Incorporating Various Metal Centers", and "Modifications to Light Delivery". Conclusion: PDT is a suitable treatment option for several diseases however there are several challenges and limitations. The incorporation of NPs in the field of PDT is an extremely promising avenue which can be utilized to improve the execution of PDT. Furthermore, the use of inorganic compounds was noted to be frequented in the development of PSs and NP conjugates. The patents presented addressed the associated problems with PDT but there still remains an opportunity for continued research efforts so that more clinical applications are possible.

SELECTION OF CITATIONS
SEARCH DETAIL
...