Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters










Publication year range
1.
Nat Rev Chem ; 8(5): 376-400, 2024 May.
Article in English | MEDLINE | ID: mdl-38693313

ABSTRACT

Electrification to reduce or eliminate greenhouse gas emissions is essential to mitigate climate change. However, a substantial portion of our manufacturing and transportation infrastructure will be difficult to electrify and/or will continue to use carbon as a key component, including areas in aviation, heavy-duty and marine transportation, and the chemical industry. In this Roadmap, we explore how multidisciplinary approaches will enable us to close the carbon cycle and create a circular economy by defossilizing these difficult-to-electrify areas and those that will continue to need carbon. We discuss two approaches for this: developing carbon alternatives and improving our ability to reuse carbon, enabled by separations. Furthermore, we posit that co-design and use-driven fundamental science are essential to reach aggressive greenhouse gas reduction targets.

2.
Inorg Chem ; 63(4): 2024-2033, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38230973

ABSTRACT

The development of earth-abundant transition-metal complexes for electrocatalytic ammonia oxidation is needed to facilitate a renewable energy economy. Important to this goal is a fundamental understanding of how ammonia binds to complexes as a function of ligand geometry and electronic effects. We report the synthesis and characterization of a series of Fe(II)-NH3 complexes supported by tetradentate, facially binding ligands with a combination of pyridine and N-heterocyclic carbene donors. Electronic modification of the supporting ligand led to significant shifts in the FeIII/II potential and variations in NH bond acidities. Finally, investigations of ammonia oxidation by cyclic voltammetry, controlled potential bulk electrolysis, and through addition of stoichiometric organic radicals, TEMPO and tBu3ArO• are reported. No catalytic oxidation of NH3 to N2 was observed, and 15N2 was detected only in reactions with tBu3ArO•.

3.
Angew Chem Int Ed Engl ; 62(30): e202304648, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37221959

ABSTRACT

Mechanistic studies of substrate insertion into dimeric [(NHC)CuH]2 (NHC=N-heterocyclic carbene) complexes with two bridging hydrides have been shown to require dimer dissociation to generate transient, highly reactive (NHC)Cu-H monomers in solution. Using single-crystal to single-crystal (SC-SC) transformations, we discovered a new pathway of stepwise insertion of CO2 into [(NHC)CuH]2 without complete dissociation of the dimer. The first CO2 insertion into dimeric [(IPr*OMe)CuH]2 (IPr*OMe=N,N'-bis(2,6-bis(diphenylmethyl)-4-methoxy-phenyl)imidazole-2-ylidene) produced a dicopper formate hydride [(IPr*OMe)Cu]2 (µ-1,3-O2 CH)(µ-H). A second CO2 insertion produced a dicopper bis(formate), [(IPr*OMe)Cu]2 (µ-1,3-O2 CH)(µ-1,1-O2 CH), containing two different bonding modes of the bridging formate. These dicopper formate complexes are inaccessible from solution reactions since the dicopper core cleanly ruptures to monomeric complexes when dissolved in a solvent.

4.
Inorg Chem ; 62(1): 342-352, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36525336

ABSTRACT

The ability of Cu-H complexes to undergo selective insertion of unsaturated hydrocarbons under mild conditions has rendered them valuable, versatile catalysts. The direct formation of Cu allyl intermediates from unfunctionalized 1,3-dienes and transient Cu hydrides is an appealing strategy for upgrading conjugated diene feedstocks. However, empirical mechanistic studies of the underlying elementary steps and characterization of key intermediates in Cu-H catalysis are sparse. Using [(NHC)CuH]2 (NHC = N-heterocyclic carbene), we examined the steric effects of NHC ligands on two key elementary steps of CuH-catalyzed carbonyl allylation: the insertion of a diene into the Cu-H bond to produce a Cu-allyl complex, and the formation of C-C bonds from stoichiometric allylations of ketones and aldehydes. The resulting allyl and homoallylic alkoxide complexes have been characterized by NMR spectroscopy and single-crystal X-ray diffraction. Employing isolable (NHC)Cu-allyl complexes, we further evaluated the roles of the ligand size, electronic properties of carbonyl substrates, coordinating groups within the substrate, and solvent on the regioselectivity, diastereoselectivity, and relative rate of the C-C bond formation step. In contrast to the clean allylation of ketones, allylation of aldehydes provided a rare example of a formal ß-hydride elimination reaction from a secondary homoallylic alkoxide species. Mechanistic studies of key elementary steps provide insights for a range of catalytic reactions of dienes mediated by hydride complexes.


Subject(s)
Aldehydes , Butadienes , Aldehydes/chemistry , Polyenes , Ketones , Catalysis
5.
Inorg Chem ; 61(39): 15325-15334, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36121917

ABSTRACT

Double hydrogen atom abstraction from (TMP)OsII(NH3)2 (TMP = tetramesitylporphyrin) with phenoxyl or nitroxyl radicals leads to (TMP)OsIV(NH2)2. This unusual bis(amide) complex is diamagnetic and displays an N-H resonance at 12.0 ppm in its 1H NMR spectrum. 1H-15N correlation experiments identified a 15N NMR spectroscopic resonance signal at -267 ppm. Experimental reactivity studies and density functional theory calculations support relatively weak N-H bonds of 73.3 kcal/mol for (TMP)OsII(NH3)2 and 74.2 kcal/mol for (TMP)OsIII(NH3)(NH2). Cyclic voltammetry experiments provide an estimate of the pKa of [(TMP)OsIII(NH3)2]+. In the presence of Barton's base, a current enhancement is observed at the Os(III/II) couple, consistent with an ECE event. Spectroscopic experiments confirmed (TMP)OsIV(NH2)2 as the product of bulk electrolysis. Double hydrogen atom abstraction is influenced by π donation from the amides of (TMP)OsIV(NH2)2 into the d orbitals of the Os center, favoring the formation of (TMP)OsIV(NH2)2 over N-N coupling. This π donation leads to a Jahn-Teller distortion that splits the energy levels of the dxz and dyz orbitals of Os, results in a low-spin electron configuration, and leads to minimal aminyl character on the N atoms, rendering (TMP)OsIV(NH2)2 unreactive toward amide-amide coupling.

6.
Chem Rev ; 122(14): 11897-11899, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35892196
7.
J Am Chem Soc ; 144(30): 13865-13873, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35853236

ABSTRACT

Transient Cu-H monomers have long been invoked in the mechanisms of substrate insertion in Cu-H catalysis. Their role from Cu-H aggregates has been mostly inferred since ligands to stabilize these monomeric intermediates for systematic studies remain limited. Within the last decade, new sterically demanding N-heterocyclic carbene (NHC) ligands have led to isolable Cu-H dimers and, in some cases, spectroscopic characterization of Cu-H monomers in solution. We report an NHC ligand, IPr*R, containing para R groups of CHPh2 and CPh3 on the ligand periphery for the isolation of a Cu-H monomer for insertion of internal alkenes. This reactivity has not been reported for (NHC)CuH complexes despite their common application in Cu-H-catalyzed hydrofunctionalization. Changing from CHPh2 to CPh3 impacts the relative concentration of Cu-H monomers, rate of alkene insertion, and reaction of a trisubstituted internal alkene. Specifically, for R = CPh3, monomeric (IPr*CPh3)CuH was isolated and provided >95% monomer (10 mM in C6D6). In contrast, for R = CHPh2, solutions of [(IPr*CHPh2)CuH]2 are 80% dimer and 20% (IPr*CHPh2)CuH monomer at 25 °C based on 1H, 13C, and 1H-13C HMBC NMR spectroscopy. Quantitative 1H NMR kinetic studies on cyclopentene insertion into Cu-H complexes to form the corresponding Cu-cyclopentyl complexes demonstrate a strong dependence on the rate of insertion and concentration of the Cu-H monomer. Only (IPr*CPh3)CuH, which has a high monomer concentration, underwent regioselective insertion of a trisubstituted internal alkene, 1-methylcyclopentene, to give (IPr*CPh3)Cu(2-methylcyclopentyl), which has been crystallographically characterized. We also demonstrated that (IPr*CPh3)CuH catalyzes the hydroboration of cyclopentene and methylcyclopentene with pinacolborane.

8.
Inorg Chem ; 61(29): 11165-11172, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35829761

ABSTRACT

Weakening and cleaving N-H bonds is crucial for improving molecular ammonia (NH3) oxidation catalysts. We report the synthesis and H-atom-abstraction reaction of bis(ammonia)chromium porphyrin complexes Cr(TPP)(NH3)2 and Cr(TMP)(NH3)2 (TPP = 5,10,15,20-tetraphenyl-meso-porphyrin and TMP = 5,10,15,20-tetramesityl-meso-porphyrin) using bulky aryloxyl radicals. The triple H-atom-abstraction reaction results in the formation of CrV(por)(≡N), with the nitride derived from NH3, as indicated by UV-vis and IR and single-crystal structural determination of Cr(TPP)(≡N). Subsequent oxidation of this chromium(V) nitrido complex results in the formation of CrIII(por), with scission of the Cr≡N bond. Computational analysis illustrates the progression from CrII to CrV and evaluates the energetics of abstracting H atoms from CrII-NH3 to generate CrV≡N. The formation and isolation of CrV(por)(≡N) illustrates the stability of these species and the need to chemically activate the nitride ligand for atom transfer or N-N coupling reactivity.

9.
Chem Rev ; 122(14): 12427-12474, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35640056

ABSTRACT

Pendant amines play an invaluable role in chemical reactivity, especially for molecular catalysts based on earth-abundant metals. As inspired by [FeFe]-hydrogenases, which contain a pendant amine positioned for cooperative bifunctionality, synthetic catalysts have been developed to emulate this multifunctionality through incorporation of a pendant amine in the second coordination sphere. Cyclic diphosphine ligands containing two amines serve as the basis for a class of catalysts that have been extensively studied and used to demonstrate the impact of a pendant base. These 1,5-diaza-3,7-diphosphacyclooctanes, now often referred to as "P2N2" ligands, have profound effects on the reactivity of many catalysts. The resulting [Ni(PR2NR'2)2]2+ complexes are electrocatalysts for both the oxidation and production of H2. Achieving the optimal benefit of the pendant amine requires that it has suitable basicity and is properly positioned relative to the metal center. In addition to the catalytic efficacy demonstrated with [Ni(PR2NR'2)2]2+ complexes for the oxidation and production of H2, catalysts with diphosphine ligands containing pendant amines have also been demonstrated for several metals for many different reactions, both in solution and immobilized on surfaces. The impact of pendant amines in catalyst design continues to expand.


Subject(s)
Amines , Hydrogenase , Amines/chemistry , Catalysis , Hydrogen/chemistry , Hydrogenase/chemistry , Ligands
10.
Angew Chem Int Ed Engl ; 61(30): e202203172, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35482977

ABSTRACT

Hydrogenolysis and hydrolysis of aryl ethers in the liquid phase are important reactions for accessing functionalized cyclic compounds from renewable feedstocks. On supported noble metals, hydrogenolysis is initiated by a hydrogen addition to the aromatic ring followed by C-O bond cleavage. In water, hydrolysis and hydrogenolysis proceed by partial hydrogenation of the aromatic ring prior to water or hydrogen insertion. The mechanisms are common for the studied metals, but the selectivity to hydrogenolysis increases in the order Pd95 % in water and alkaline conditions.

11.
Chem Sci ; 12(34): 11495-11505, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34567502

ABSTRACT

Most ligand designs for reactions catalyzed by (NHC)Cu-H (NHC = N-heterocyclic carbene ligand) have focused on introducing steric bulk near the Cu center. Here, we evaluate the effect of remote ligand modification in a series of [(NHC)CuH]2 in which the para substituent (R) on the N-aryl groups of the NHC is Me, Et, t Bu, OMe or Cl. Although the R group is distant (6 bonds away) from the reactive Cu center, the complexes have different spectroscopic signatures. Kinetics studies of the insertion of ketone, aldimine, alkyne, and unactivated α-olefin substrates reveal that Cu-H complexes with bulky or electron-rich R groups undergo faster substrate insertion. The predominant cause of this phenomenon is destabilization of the [(NHC)CuH]2 dimer relative to the (NHC)Cu-H monomer, resulting in faster formation of Cu-H monomer. These findings indicate that remote functionalization of NHCs is a compelling strategy for accelerating the rate of substrate insertion with Cu-H species.

12.
ACS Appl Mater Interfaces ; 13(40): 47499-47510, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34590823

ABSTRACT

Conjugated organic chromophores composed of linked donor (D) and acceptor (A) moieties have attracted considerable attention for photoelectrochemical applications. In this work, we compare the optoelectronic properties and photoelectrochemical performance of two D-A-D structural isomers with thiophene-X-carboxylic acid (X denotes 3 and 2 positions) derivatives and 2,1,3-benzothiadiazole as the D and A moieties, respectively. 5,5'-(Benzo[c][1,2,5]thiadiazole-4,7-diyl)bis(thiophene-3-carboxylic acid), BTD1, and 5,5'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis(thiophene-2-carboxylic acid), BTD2, were employed in the study to understand how structural isomers affect surface attachments within chromophore-catalyst assemblies and their influence on charge-transfer dynamics. Crystal structures revealed that varying the position of the -COOH anchoring group causes the molecules to either contort out of a plane (BTD1) or adopt a near-perfect planar conformation (BTD2). BTD1 and BTD2 were co-loaded with either a water oxidation catalyst, [Ru(2,6-bis(1-methylbenzimidazol-2-yl)pyridine)-(4,4'-((HO)2OPCH2)2-2,2'-bipyridine)(OH2)]2, RuCt2+, or proton reduction catalyst [Ni(P2PhN2C6H4CH2PO3H2)2]2+, NiCt2+, on oxide electrodes to facilitate photodriven water splitting reactions. Emission quenching measurements indicate that both BTD1 and BTD2 inject electrons into n-type SnO2|TiO2 electrodes and holes into p-type NiO semiconductors from their respective excited states at high efficiencies >60%. Photocurrent densities of chromophore-catalyst assemblies obtained using linear sweep voltammetry (LSV) show that BTD2-sensitized photoanodes generate significantly more photocurrent than BTD1-sensitized electrodes; however, both exhibit similar performances at the photocathode. Photoelectrocatyltic measurements demonstrate that both BTD1 and BTD2 performed similarly, generating Faradaic efficiencies of 39 and 38% at the anode or 61 and 79% at the cathode. Transient absorption measurements suggest that the differences between the LSV and photoelectrocatalytic measurements result from the differences in quantum yields of the photogenerated redox equivalents, which is also a reflection of the varying metal oxide surface conformation. Our findings suggest that BTD2 should be investigated further in photocathodic studies since it has the structural advantage of being incorporated into diverse types of chromophore-catalyst assemblies.

13.
Dalton Trans ; 50(3): 840-849, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33237062

ABSTRACT

Splitting of molecular hydrogen (H2) into bridging and terminal hydrides is a common step in transition metal chemistry. Herein, we propose a novel organometallic platform for cleavage of multiple H2 molecules, which combines metal centers capable of stabilizing multiple oxidation states, and ligands bearing positioned pendant basic groups. Using quantum chemical modeling, we show that low-valent, early transition metal diniobium(ii) complexes with diphosphine ligands featuring pendant amines can favorably uptake up to 8 hydrogen atoms, and that the energetics are favored by the formation of intramolecular dihydrogen bonds. This result suggests new possible strategies for the development of hydrogen scavenger molecules that are able to perform reversible splitting of multiple H2 molecules.

14.
J Am Chem Soc ; 142(42): 17845-17858, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32977718

ABSTRACT

Oxidation of ammonia by molecular complexes is a burgeoning area of research, with critical scientific challenges that must be addressed. A fundamental understanding of individual reaction steps is needed, particularly for cleavage of N-H bonds and formation of N-N bonds. This Perspective evaluates the challenges of designing molecular catalysts for oxidation of ammonia and highlights recent key contributions to realizing the goals of viable energy storage and retrieval based on the N-H bonds of ammonia in a carbon-free energy cycle.

15.
Science ; 369(6505)2020 08 14.
Article in English | MEDLINE | ID: mdl-32792370

ABSTRACT

Numerous redox transformations that are essential to life are catalyzed by metalloenzymes that feature Earth-abundant metals. In contrast, platinum-group metals have been the cornerstone of many industrial catalytic reactions for decades, providing high activity, thermal stability, and tolerance to chemical poisons. We assert that nature's blueprint provides the fundamental principles for vastly expanding the use of abundant metals in catalysis. We highlight the key physical properties of abundant metals that distinguish them from precious metals, and we look to nature to understand how the inherent attributes of abundant metals can be embraced to produce highly efficient catalysts for reactions crucial to the sustainable production and transformation of fuels and chemicals.

16.
Angew Chem Int Ed Engl ; 59(22): 8645-8653, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32022415

ABSTRACT

We report mechanistic studies on the insertion reactions of [(NHC)Cu(µ-H)]2 complexes with carbonyl substrates by UV-vis and 1 H NMR spectroscopic kinetic studies, H/D isotopic labelling, and X-ray crystallography. The results of these comprehensive studies show that the insertion of Cu-H with an aldehyde, ketone, activated ester/amide, and unactivated amide consist of two different rate limiting steps: the formation of Cu-H monomer from Cu-H dimer for more electrophilic substrates, and hydride transfer from a transient Cu-H monomer for less electrophilic substrates. We also report spectroscopic and crystallographic characterization of rare Cu-hemiacetalate and Cu-hemiaminalate moieties from the insertion of an ester or amide into the Cu-H bond.

17.
J Am Chem Soc ; 142(7): 3361-3365, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32009401

ABSTRACT

We report that (TMP)Ru(NH3)2 (TMP = tetramesitylporphryin) is a molecular catalyst for oxidation of ammonia to dinitrogen. An aryloxy radical, tri-tert-butylphenoxyl (ArO·), abstracts H atoms from a bound ammonia ligand of (TMP)Ru(NH3)2, leading to the discovery of a new catalytic C-N coupling to the para position of ArO· to form 4-amino-2,4,6-tri-tert-butylcyclohexa-2,5-dien-1-one. Modification of the aryloxy radical to 2,6-di-tert-butyl-4-tritylphenoxyl radical, which contains a trityl group at the para position, prevents C-N coupling and diverts the reaction to catalytic oxidation of NH3 to give N2. We achieved 125 ± 5 turnovers at 22 °C for oxidation of NH3, the highest turnover number (TON) reported to date for a molecular catalyst.

18.
Angew Chem Int Ed Engl ; 59(4): 1445-1449, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31512341

ABSTRACT

The hydrogenolysis of the aromatic C-O bond in aryl ethers catalyzed by Ni was studied in decalin and water. Observations of a significant kinetic isotope effect (kH /kD =5.7) for the reactions of diphenyl ether under H2 and D2 atmosphere and a positive dependence of the rate on H2 chemical potential in decalin indicate that addition of H to the aromatic ring is involved in the rate-limiting step. All kinetic evidence points to the fact that H addition occurs concerted with C-O bond scission. DFT calculations also suggest a route consistent with these observations involving hydrogen atom addition to the ipso position of the phenyl ring concerted with C-O scission. Hydrogenolysis initiated by H addition in water is more selective (ca. 75 %) than reactions in decalin (ca. 30 %).

19.
Chem Commun (Camb) ; 55(93): 14058-14061, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31691686

ABSTRACT

All hydrogen atoms of the NH3 in [Mn(depe)2(CO)(NH3)]+ are abstracted by 2,4,6-tri-tert-butylphenoxyl radical, resulting in the isolation of a rare cyclophosphazenium cation, [(Et2P(CH2)2PEt2)N]+, in 76% yield. An analogous reaction is observed for [Mn(dppe)2(CO)(NH3)]+. Computations suggest insertion of NHx into a Mn-P bond provides the thermodynamic driving force. Contextualization of this reaction provides insights on catalyst design and breaking strong N-H bonds.

20.
J Am Chem Soc ; 141(26): 10390-10398, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31244171

ABSTRACT

Semiconductor-based photocathodes with high light-absorption capability are of interest in the production of solar fuels, but many of them are limited by low efficiencies due to rapid interfacial back electron transfer. We demonstrate here that a nanowire-structured p-type Si (p-Si) electrode, surface-modified with a perylene-diimide derivative (PDI'), can undergo photoreduction of a surface-bound, water reduction catalyst toward efficient H2 evolution under a low applied bias. At the electrode interface, the PDI' layer converts green light into high-energy holes at its excited state for extraction of photogenerated electrons at the photoexcited p-Si. The photogenerated electrons at the reduced PDI' are subsequently transferred to the molecular H2-evolution catalyst. Involvement of the photoexcited PDI' enables effective redox separation between the electrons at the reduced catalyst and the holes at the valence band of p-Si. The heterojunction photocathode was used in a tandem cell by coupling with a dye-sensitized photoanode for solar-driven water splitting into H2 and O2.

SELECTION OF CITATIONS
SEARCH DETAIL
...