Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
5.
Nat Commun ; 13(1): 970, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35217634

ABSTRACT

Many bacteria and archaea possess a two-dimensional protein array, or S-layer, that covers the cell surface and plays crucial roles in cell physiology. Here, we report the crystal structure of SlpA, the main S-layer protein of the bacterial pathogen Clostridioides difficile, and use electron microscopy to study S-layer organisation and assembly. The SlpA crystal lattice mimics S-layer assembly in the cell, through tiling of triangular prisms above the cell wall, interlocked by distinct ridges facing the environment. Strikingly, the array is very compact, with pores of only ~10 Å in diameter, compared to other S-layers (30-100 Å). The surface-exposed flexible ridges are partially dispensable for overall structure and assembly, although a mutant lacking this region becomes susceptible to lysozyme, an important molecule in host defence. Thus, our work gives insights into S-layer organisation and provides a basis for development of C. difficile-specific therapeutics.


Subject(s)
Clostridioides difficile , Bacterial Proteins/metabolism , Cell Wall/metabolism , Clostridioides difficile/genetics
6.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Article in English | MEDLINE | ID: mdl-34716264

ABSTRACT

Bacterial cell wall peptidoglycan is essential, maintaining both cellular integrity and morphology, in the face of internal turgor pressure. Peptidoglycan synthesis is important, as it is targeted by cell wall antibiotics, including methicillin and vancomycin. Here, we have used the major human pathogen Staphylococcus aureus to elucidate both the cell wall dynamic processes essential for growth (life) and the bactericidal effects of cell wall antibiotics (death) based on the principle of coordinated peptidoglycan synthesis and hydrolysis. The death of S. aureus due to depletion of the essential, two-component and positive regulatory system for peptidoglycan hydrolase activity (WalKR) is prevented by addition of otherwise bactericidal cell wall antibiotics, resulting in stasis. In contrast, cell wall antibiotics kill via the activity of peptidoglycan hydrolases in the absence of concomitant synthesis. Both methicillin and vancomycin treatment lead to the appearance of perforating holes throughout the cell wall due to peptidoglycan hydrolases. Methicillin alone also results in plasmolysis and misshapen septa with the involvement of the major peptidoglycan hydrolase Atl, a process that is inhibited by vancomycin. The bactericidal effect of vancomycin involves the peptidoglycan hydrolase SagB. In the presence of cell wall antibiotics, the inhibition of peptidoglycan hydrolase activity using the inhibitor complestatin results in reduced killing, while, conversely, the deregulation of hydrolase activity via loss of wall teichoic acids increases the death rate. For S. aureus, the independent regulation of cell wall synthesis and hydrolysis can lead to cell growth, death, or stasis, with implications for the development of new control regimes for this important pathogen.


Subject(s)
Cell Wall/physiology , Peptidoglycan/metabolism , Staphylococcus aureus/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacterial Proteins/metabolism , Cell Wall/metabolism , Homeostasis , Methicillin/pharmacology , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism , Teichoic Acids/metabolism , Vancomycin/pharmacology
7.
ACS Nano ; 15(10): 16011-16018, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34533301

ABSTRACT

Understanding how bacteria grow and divide requires insight into both the molecular-level dynamics of ultrastructure and the chemistry of the constituent components. Atomic force microscopy (AFM) can provide near molecular resolution images of biological systems but typically provides limited chemical information. Conversely, while super-resolution optical microscopy allows localization of particular molecules and chemistries, information on the molecular context is difficult to obtain. Here, we combine these approaches into STORMForce (stochastic optical reconstruction with atomic force microscopy) and the complementary SIMForce (structured illumination with atomic force microscopy), to map the synthesis of the bacterial cell wall structural macromolecule, peptidoglycan, during growth and division in the rod-shaped bacterium Bacillus subtilis. Using "clickable" d-amino acid incorporation, we fluorescently label and spatially localize a short and controlled period of peptidoglycan synthesis and correlate this information with high-resolution AFM of the resulting architecture. During division, septal synthesis occurs across its developing surface, suggesting a two-stage process with incorporation at the leading edge and with considerable in-filling behind. During growth, the elongation of the rod occurs through bands of synthesis, spaced by ∼300 nm, and corresponds to denser regions of the internal cell wall as revealed by AFM. Combining super-resolution optics and AFM can provide insights into the synthesis processes that produce the complex architectures of bacterial structural biopolymers.


Subject(s)
Bacillus subtilis , Cell Wall , Microscopy, Atomic Force , Microscopy, Fluorescence , Peptidoglycan
8.
Methods Cell Biol ; 162: 69-87, 2021.
Article in English | MEDLINE | ID: mdl-33707023

ABSTRACT

The potential for increasing the application of Correlative Light Electron Microscopy (CLEM) technologies in life science research is hindered by the lack of suitable molecular probes that are emissive, photostable, and scatter electrons well. Most brightly fluorescent organic molecules are intrinsically poor electron-scatterers, while multi-metallic compounds scatter electrons well but are usually non-luminescent. Thus, the goal of CLEM to image the same object of interest on the continuous scale from hundreds of microns to nanometers remains a major challenge partially due to requirements for a single probe to be suitable for light (LM) and electron microscopy (EM). Some of the main CLEM probes, based on gold nanoparticles appended with fluorophores and quantum dots (QD) have presented significant drawbacks. Here we present an Iridium-based luminescent metal complex (Ir complex 1) as a probe and describe how we have developed a CLEM workflow based on such metal complexes.


Subject(s)
Coordination Complexes , Metal Nanoparticles , Electrons , Gold , Microscopy, Electron , Microscopy, Fluorescence , Workflow
9.
mSphere ; 5(4)2020 07 01.
Article in English | MEDLINE | ID: mdl-32611700

ABSTRACT

Spores, the infectious agents of many Firmicutes, are remarkably resilient cell forms. Even distant relatives can have similar spore architectures although some display unique features; they all incorporate protective proteinaceous envelopes. We previously found that Bacillus spores can achieve these protective properties through extensive disulfide cross-linking of self-assembled arrays of cysteine-rich proteins. We predicted that this could be a mechanism employed by spore formers in general, even those from other genera. Here, we tested this by revealing in nanometer detail how the outer envelope (exosporium) in Clostridium sporogenes (surrogate for C. botulinum group I), and in other clostridial relatives, forms a hexagonally symmetric semipermeable array. A cysteine-rich protein, CsxA, when expressed in Escherichia coli, self-assembles into a highly thermally stable structure identical to that of the native exosporium. Like the exosporium, CsxA arrays require harsh "reducing" conditions for disassembly. We conclude that in vivo, CsxA self-organizes into a highly resilient, disulfide cross-linked array decorated with additional protein appendages enveloping the forespore. This pattern is remarkably similar to that in Bacillus spores, despite a lack of protein homology. In both cases, intracellular disulfide formation is favored by the high lattice symmetry. We have identified cysteine-rich proteins in many distantly related spore formers and propose that they may adopt a similar strategy for intracellular assembly of robust protective structures.IMPORTANCE Bacteria such as those causing botulism and anthrax survive harsh conditions and spread disease as spores. Distantly related species have similar spore architectures with protective proteinaceous layers aiding adhesion and targeting. The structures that confer these common properties are largely unstudied, and the proteins involved can be very dissimilar in sequence. We identify CsxA as a cysteine-rich protein that self-assembles in a two-dimensional lattice enveloping the spores of several Clostridium species. We show that apparently unrelated cysteine-rich proteins from very different species can self-assemble to form remarkably similar and robust structures. We propose that diverse cysteine-rich proteins identified in the genomes of a broad range of spore formers may adopt a similar strategy for assembly.


Subject(s)
Clostridium botulinum/physiology , Clostridium/physiology , Spores, Bacterial/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Wall/metabolism , Cysteine/metabolism , Escherichia coli/genetics
10.
J Biol Chem ; 294(48): 18077-18091, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31624143

ABSTRACT

Alginate is a polymer containing two uronic acid epimers, ß-d-mannuronate (M) and α-l-guluronate (G), and is a major component of brown seaweed that is depolymerized by alginate lyases. These enzymes have diverse specificity, cleaving the chain with endo- or exotype activity and with differential selectivity for the sequence of M or G at the cleavage site. Dp0100 is a 201-kDa multimodular, broad-specificity endotype alginate lyase from the marine thermophile Defluviitalea phaphyphila, which uses brown algae as a carbon source, converting it to ethanol, and bioinformatics analysis suggested that its catalytic domain represents a new polysaccharide lyase family, PL39. The structure of the Dp0100 catalytic domain, determined at 2.07 Å resolution, revealed that it comprises three regions strongly resembling those of the exotype lyase families PL15 and PL17. The conservation of key catalytic histidine and tyrosine residues belonging to the latter suggests these enzymes share mechanistic similarities. A complex of Dp0100 with a pentasaccharide, M5, showed that the oligosaccharide is located in subsites -2, -1, +1, +2, and +3 in a long, deep canyon open at both ends, explaining the endotype activity of this lyase. This contrasted with the hindered binding sites of the exotype enzymes, which are blocked such that only one sugar moiety can be accommodated at the -1 position in the catalytic site. The biochemical and structural analyses of Dp0100, the first for this new class of endotype alginate lyases, have furthered our understanding of the structure-function and evolutionary relationships within this important class of enzymes.


Subject(s)
Bacterial Proteins/chemistry , Clostridiales/enzymology , Polysaccharide-Lyases/chemistry , Bacterial Proteins/genetics , Clostridiales/genetics , Crystallography, X-Ray , Polysaccharide-Lyases/genetics , Protein Domains
11.
Nat Commun ; 10(1): 2900, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31263098

ABSTRACT

The alpha helical CytolysinA family of pore forming toxins (α-PFT) contains single, two, and three component members. Structures of the single component Eschericia coli ClyA and the two component Yersinia enterolytica YaxAB show both undergo conformational changes from soluble to pore forms, and oligomerization to produce the active pore. Here we identify tripartite α-PFTs in pathogenic Gram negative bacteria, including Aeromonas hydrophila (AhlABC). We show that the AhlABC toxin requires all three components for maximal cell lysis. We present structures of pore components which describe a bi-fold hinge mechanism for soluble to pore transition in AhlB and a contrasting tetrameric assembly employed by soluble AhlC to hide their hydrophobic membrane associated residues. We propose a model of pore assembly where the AhlC tetramer dissociates, binds a single membrane leaflet, recruits AhlB promoting soluble to pore transition, prior to AhlA binding to form the active hydrophilic lined pore.


Subject(s)
Aeromonas hydrophila/metabolism , Bacterial Toxins/chemistry , Hemolysin Proteins/chemistry , Pore Forming Cytotoxic Proteins/chemistry , Aeromonas hydrophila/chemistry , Aeromonas hydrophila/genetics , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Crystallography, X-Ray , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/metabolism
12.
Adv Mater ; 31(17): e1807521, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30866118

ABSTRACT

The development of extracellular matrix mimetics that imitate niche stem cell microenvironments and support cell growth for technological applications is intensely pursued. Specifically, mimetics are sought that can enact control over the self-renewal and directed differentiation of human pluripotent stem cells (hPSCs) for clinical use. Despite considerable progress in the field, a major impediment to the clinical translation of hPSCs is the difficulty and high cost of large-scale cell production under xeno-free culture conditions using current matrices. Here, a bioactive, recombinant, protein-based polymer, termed ZTFn , is presented that closely mimics human plasma fibronectin and serves as an economical, xeno-free, biodegradable, and functionally adaptable cell substrate. The ZTFn substrate supports with high performance the propagation and long-term self-renewal of human embryonic stem cells while preserving their pluripotency. The ZTFn polymer can, therefore, be proposed as an efficient and affordable replacement for fibronectin in clinical grade cell culturing. Further, it can be postulated that the ZT polymer has significant engineering potential for further orthogonal functionalization in complex cell applications.


Subject(s)
Cell Self Renewal/drug effects , Embryonic Stem Cells/metabolism , Extracellular Matrix/chemistry , Fibronectins/chemistry , Multiprotein Complexes/chemistry , Amino Acid Sequence , Biomimetic Materials/chemistry , Cell Culture Techniques/methods , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cross-Linking Reagents/chemistry , Humans , Polymers/chemistry , Protein Conformation
13.
Nat Commun ; 9(1): 4765, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30420757

ABSTRACT

The type VI secretion system (T6SS) is a multi-protein complex that injects bacterial effector proteins into target cells. It is composed of a cell membrane complex anchored to a contractile bacteriophage tail-like apparatus consisting of a sharpened tube that is ejected by the contraction of a sheath against a baseplate. We present structural and biochemical studies on TssA subunits from two different T6SSs that reveal radically different quaternary structures in comparison to the dodecameric E. coli TssA that arise from differences in their C-terminal sequences. Despite this, the different TssAs retain equivalent interactions with other components of the complex and position their highly conserved N-terminal ImpA_N domain at the same radius from the centre of the sheath as a result of their distinct domain architectures, which includes additional spacer domains and highly mobile interdomain linkers. Together, these variations allow these distinct TssAs to perform a similar function in the complex.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Secretion Systems , Protein Subunits/chemistry , Protein Subunits/metabolism , Amino Acid Sequence , Bacterial Proteins/ultrastructure , Computational Biology , Phylogeny , Protein Domains , Proteolysis , Structure-Activity Relationship
14.
Mol Microbiol ; 104(4): 539-552, 2017 05.
Article in English | MEDLINE | ID: mdl-28214340

ABSTRACT

Bacteria of the genera Bacillus and Clostridium form highly resistant spores, which in the case of some pathogens act as the infectious agents. An exosporium forms the outermost layer of some spores; it plays roles in protection, adhesion, dissemination, host targeting in pathogens and germination control. The exosporium of the Bacillus cereus group, including the anthrax pathogen, contains a 2D-crystalline basal layer, overlaid by a hairy nap. BclA and related proteins form the hairy nap, and require ExsFA (BxpB) for their localization on the basal layer. Until now, the identity of the main structural protein components of the basal layer was unknown. We demonstrate here that ExsY forms one of the essential components. Through heterologous expression in Escherichia coli, we also demonstrate that ExsY can self-assemble into ordered 2D arrays that mimic the structure of the exosporium basal layer. Self-assembly is likely to play an important role in the construction of the exosporium. The ExsY array is stable to heat and chemical denaturants, forming a robust layer that would contribute to overall spore resistance. Our structural analysis also provides novel insight into the location of other molecular components anchored onto the exosporium, such as BclA and ExsFA.


Subject(s)
Bacillus cereus/metabolism , Spores, Bacterial/genetics , Spores, Bacterial/metabolism , Bacillus/metabolism , Bacillus anthracis/metabolism , Bacillus cereus/genetics , Bacterial Proteins/metabolism , Cell Wall/metabolism , Membrane Glycoproteins/metabolism , Spores/metabolism
15.
Food Microbiol ; 59: 205-12, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27375261

ABSTRACT

Clostridium sporogenes is a non-pathogenic close relative and surrogate for Group I (proteolytic) neurotoxin-producing Clostridium botulinum strains. The exosporium, the sac-like outermost layer of spores of these species, is likely to contribute to adhesion, dissemination, and virulence. A paracrystalline array, hairy nap, and several appendages were detected in the exosporium of C. sporogenes strain NCIMB 701792 by EM and AFM. The protein composition of purified exosporium was explored by LC-MS/MS of tryptic peptides from major individual SDS-PAGE-separated protein bands, and from bulk exosporium. Two high molecular weight protein bands both contained the same protein with a collagen-like repeat domain, the probable constituent of the hairy nap, as well as cysteine-rich proteins CsxA and CsxB. A third cysteine-rich protein (CsxC) was also identified. These three proteins are also encoded in C. botulinum Prevot 594, and homologues (75-100% amino acid identity) are encoded in many other Group I strains. This work provides the first insight into the likely composition and organization of the exosporium of Group I C. botulinum spores.


Subject(s)
Bacterial Proteins/chemistry , Clostridium botulinum/chemistry , Clostridium/chemistry , Spores, Bacterial/chemistry , Electrophoresis, Polyacrylamide Gel , Sequence Homology, Amino Acid , Spores, Bacterial/metabolism , Spores, Bacterial/ultrastructure , Tandem Mass Spectrometry
16.
PLoS One ; 10(11): e0143010, 2015.
Article in English | MEDLINE | ID: mdl-26606682

ABSTRACT

Membrane proteins play key roles in many biological processes, from acquisition of nutrients to neurotransmission, and are targets for more than 50% of current therapeutic drugs. However, their investigation is hampered by difficulties in their production and purification on a scale suitable for structural studies. In particular, the nature and location of affinity tags introduced for the purification of recombinant membrane proteins can greatly influence their expression levels by affecting their membrane insertion. The extent of such effects typically depends on the transmembrane topologies of the proteins, which for proteins of unknown structure are usually uncertain. For example, attachment of oligohistidine tags to the periplasmic termini of membrane proteins often interferes with folding and drastically impairs expression in Escherichia coli. To circumvent this problem we have employed a novel strategy to enable the rapid production of constructs bearing a range of different affinity tags compatible with either cytoplasmic or periplasmic attachment. Tags include conventional oligohistidine tags compatible with cytoplasmic attachment and, for attachment to proteins with a periplasmic terminus, either tandem Strep-tag II sequences or oligohistidine tags fused to maltose binding protein and a signal sequence. Inclusion of cleavage sites for TEV or HRV-3C protease enables tag removal prior to crystallisation trials or a second step of purification. Together with the use of bioinformatic approaches to identify members of membrane protein families with topologies favourable to cytoplasmic tagging, this has enabled us to express and purify multiple bacterial membrane transporters. To illustrate this strategy, we describe here its use to purify bacterial homologues of human membrane proteins from the Nramp and ZIP families of divalent metal cation transporters and from the concentrative nucleoside transporter family. The proteins are expressed in E. coli in a correctly folded, functional state and can be purified in amounts suitable for structural investigations.


Subject(s)
Bacterial Proteins/metabolism , Cations, Divalent/metabolism , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Metals/metabolism , Nucleoside Transport Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Gene Expression , Gene Order , Genetic Vectors/genetics , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/isolation & purification , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/isolation & purification , Nucleoside Transport Proteins/chemistry , Nucleoside Transport Proteins/genetics , Nucleoside Transport Proteins/isolation & purification , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism
17.
Mol Microbiol ; 97(2): 347-59, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25872412

ABSTRACT

Bacterial spores (endospores), such as those of the pathogens Clostridium difficile and Bacillus anthracis, are uniquely stable cell forms, highly resistant to harsh environmental insults. Bacillus subtilis is the best studied spore-former and we have used it to address the question of how the spore coat is assembled from multiple components to form a robust, protective superstructure. B. subtilis coat proteins (CotY, CotE, CotV and CotW) expressed in Escherichia coli can arrange intracellularly into highly stable macro-structures through processes of self-assembly. Using electron microscopy, we demonstrate the capacity of these proteins to generate ordered one-dimensional fibres, two-dimensional sheets and three-dimensional stacks. In one case (CotY), the high degree of order favours strong, cooperative intracellular disulfide cross-linking. Assemblies of this kind could form exquisitely adapted building blocks for higher-order assembly across all spore-formers. These physically robust arrayed units could also have novel applications in nano-biotechnology processes.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/ultrastructure , Bacterial Proteins/ultrastructure , Crystallography, X-Ray , Microscopy, Electron , Spores, Bacterial
18.
Biochem J ; 464(3): 315-22, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25471602

ABSTRACT

Magnesium chelatase (MgCH) initiates chlorophyll biosynthesis by catalysing the ATP-dependent insertion of Mg2+ into protoporphyrin. This large enzyme complex comprises ChlH, I and D subunits, with I and D involved in ATP hydrolysis, and H the protein that handles the substrate and product. The 148 kDa ChlH subunit has a globular N-terminal domain attached by a narrow linker to a hollow cage-like structure. Following deletion of this ~18 kDa domain from the Thermosynechoccus elongatus ChlH, we used single particle reconstruction to show that the apo- and porphyrin-bound forms of the mutant subunit consist of a hollow globular protein with three connected lobes; superposition of the mutant and native ChlH structures shows that, despite the clear absence of the N-terminal 'head' region, the rest of the protein appears to be correctly folded. Analyses of dissociation constants shows that the ΔN159ChlH mutant retains the ability to bind protoporphyrin and the Gun4 enhancer protein, although the addition of I and D subunits yields an extremely impaired active enzyme complex. Addition of the Gun4 enhancer protein, which stimulates MgCH activity significantly especially at low Mg2+ concentrations, partially reactivates the ΔN159ChlH-I-D mutant enzyme complex, suggesting that the binding site or sites for Gun4 on H do not wholly depend on the N-terminal domain.


Subject(s)
Lyases/chemistry , Lyases/physiology , Synechococcus/enzymology , Amino Acid Sequence , Gene Deletion , Models, Molecular , Molecular Conformation , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Structure-Activity Relationship
19.
J Biol Chem ; 289(33): 23177-23188, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24958725

ABSTRACT

In Escherichia coli, the biogenesis of both cytochrome bd-type quinol oxidases and periplasmic cytochromes requires the ATP-binding cassette-type cysteine/GSH transporter, CydDC. Recombinant CydDC was purified as a heterodimer and found to be an active ATPase both in soluble form with detergent and when reconstituted into a lipid environment. Two-dimensional crystals of CydDC were analyzed by electron cryomicroscopy, and the protein was shown to be made up of two non-identical domains corresponding to the putative CydD and CydC subunits, with dimensions characteristic of other ATP-binding cassette transporters. CydDC binds heme b. Detergent-solubilized CydDC appears to adopt at least two structural states, each associated with a characteristic level of bound heme. The purified protein in detergent showed a weak basal ATPase activity (approximately 100 nmol Pi/min/mg) that was stimulated ∼3-fold by various thiol compounds, suggesting that CydDC could act as a thiol transporter. The presence of heme (either intrinsic or added in the form of hemin) led to a further enhancement of thiol-stimulated ATPase activity, although a large excess of heme inhibited activity. Similar responses of the ATPase activity were observed with CydDC reconstituted into E. coli lipids. These results suggest that heme may have a regulatory role in CydDC-mediated transmembrane thiol transport.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphatases/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Heme/chemistry , Protein Multimerization , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Biological Transport, Active/physiology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Heme/genetics , Heme/metabolism , Protein Structure, Quaternary , Structure-Activity Relationship
20.
Biochemistry ; 52(43): 7575-85, 2013 Oct 29.
Article in English | MEDLINE | ID: mdl-24131108

ABSTRACT

Reaction center-light harvesting 1 (RC-LH1) complexes are the fundamental units of bacterial photosynthesis, which use solar energy to power the reduction of quinone to quinol prior to the formation of the proton gradient that drives ATP synthesis. The dimeric RC-LH1-PufX complex of Rhodobacter sphaeroides is composed of 64 polypeptides and 128 cofactors, including 56 LH1 bacteriochlorophyll a (BChl a) molecules that surround and donate energy to the two RCs. The 3D structure was determined to 8 Å by X-ray crystallography, and a model was built with constraints provided by electron microscopy (EM), nuclear magnetic resonance (NMR), mass spectrometry (MS), and site-directed mutagenesis. Each half of the dimer complex consists of a RC surrounded by an array of 14 LH1 αß subunits, with two BChls sandwiched between each αß pair of transmembrane helices. The N- and C-terminal extrinsic domains of PufX promote dimerization by interacting with the corresponding domains of an LH1 ß polypeptide from the other half of the RC-LH1-PufX complex. Close contacts between PufX, an LH1 αß subunit, and the cytoplasmic domain of the RC-H subunit prevent the LH1 complex from encircling the RC and create a channel connecting the RC QB site to an opening in the LH1 ring, allowing Q/QH2 exchange with the external quinone pool. We also identified a channel that connects the two halves of the dimer, potentially forming a long-range pathway for quinone migration along rows of RC-LH1-PufX complexes in the membrane. The structure of the RC-LH1-PufX complex explains the crucial role played by PufX in dimer formation, and it shows how quinone traffic traverses the LH1 complex as it shuttles between the RC and the cytochrome bc1 complex.


Subject(s)
Bacterial Proteins/chemistry , Light-Harvesting Protein Complexes/chemistry , Models, Molecular , Rhodobacter sphaeroides/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriochlorophyll A/analysis , Bacteriochlorophyll A/chemistry , Bacteriochlorophyll A/metabolism , Benzoquinones/chemistry , Benzoquinones/metabolism , Carotenoids/analysis , Carotenoids/chemistry , Carotenoids/metabolism , Light-Harvesting Protein Complexes/genetics , Light-Harvesting Protein Complexes/metabolism , Mass Spectrometry , Oxidation-Reduction , Protein Conformation , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Quaternary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...