Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 122(19): 3937-3949, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37621088

ABSTRACT

Polarimetric second harmonic generation (SHG) microscopy imaging is employed to investigate the ultrastructural organization of biological and biomimetic partially oriented fibrillar structures. The linear polarization-in polarization-out SHG microscopy measurements are conducted with rat tail tendon, rabbit cornea, pig cartilage, and biomimetic meso-tetra(4-sulfonatophenyl)porphine (TPPS4) cylindrical aggregates, which represent different two- and three-dimensional (2D and 3D) configurations of C6 symmetry fibril structures in the focal volume (voxel) of the microscope. The polarization-in polarization-out imaging of rat tail tendon reveals that SHG intensity is affected by parallel/antiparallel arrangements of the fibers, and achiral (R) and chiral (C) susceptibility component ratio values change by tilting the tendon fibers out of image plane. The R ratio changes for the 2D crossing fibers observed in cornea tissue. The 3D crossing of fibers also affects R ratio in cartilage tissue. The distinctly different dependence of R on crossing and tilting of fibers is demonstrated in collagen and TPPS4 aggregates, due to the achiral molecular susceptibility ratio having values below and above 3, respectively. The polarimetric microscopy results correspond well with the analytical expressions of amplitude and R and C ratios dependence on the crossing angle of the fibers. The experimentally measured SHG intensity and R and C ratio maps are consistent with the computational modeling of various fiber configurations presented in the preceding article. The demonstrated SHG intensity and R and C ratio dependencies on fibril configurations provide the basis for interpreting polarimetric SHG microscopy images in terms of 3D ultrastructural organization of fibers in each voxel of the samples.

2.
Nanomaterials (Basel) ; 12(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36234387

ABSTRACT

Highly biocompatible nanostructures for multimodality imaging are critical for clinical diagnostics improvements in the future. Combining optical imaging with other techniques may lead to important advances in diagnostics. The purpose of such a system would be to combine the individual advantages of each imaging method to provide reliable and accurate information at the site of the disease bypassing the limitations of each. The aim of the presented study was to evaluate biodistribution of the biocompatible technetium-99m labelled bovine serum albumin-gold nanoclusters (99mTc-BSA-Au NCs) as photoluminescence-SPECT/CT agent in experimental animals. It was verified spectroscopically that radiolabelling with 99mTc does not influence the optical properties of BSA-Au NCs within the synthesized 99mTc-BSA-Au NCs bioconjugates. Biodistribution imaging of the 99mTc-BSA-Au NCs in Wistar rats was performed using a clinical SPECT/CT system. In vivo imaging of Wistar rats demonstrated intense cardiac blood pool activity, as well as rapid blood clearance and accumulation in the kidneys, liver, and urinary bladder. Confocal images of kidney, liver and spleen tissues revealed no visible uptake indicating that the circulation lifetime of 99mTc-BSA-Au NCs in the bloodstream might be too short for accumulation in these tissues. The cellular uptake of 99mTc-BSA-Au NCs in kidney cells was also delayed and substantial accumulation was observed only after 24-h incubation. Based on our experiments, it was concluded that 99mTc-BSA-Au NCs could be used as a contrast agent and shows promise as potential diagnostic agents for bloodstream imaging of the excretory organs in vivo.

3.
ACS Appl Mater Interfaces ; 13(37): 43937-43951, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34499462

ABSTRACT

Nanotechnology has emerged as a promising solution to permanent elimination of cancer. However, nanoparticles themselves lack specificity to tumors. Due to enhanced migration to tumors, mesenchymal stem cells (MSCs) were suggested as cell-mediated delivery vehicles of nanoparticles. In this study, we have constructed a complex composed of photoluminescent quantum dots (QDs) and a photosensitizer chlorin e6 (Ce6) to obtain multifunctional nanoparticles, combining cancer diagnostic and therapeutic properties. QDs serve as energy donors-excited QDs transfer energy to the attached Ce6 via Förster resonance energy transfer, which in turn generates reactive oxygen species. Here, the physicochemical properties of the QD-Ce6 complex and singlet oxygen generation were measured, and the stability in protein-rich media was evaluated, showing that the complex remains the most stable in protein-free medium. In vitro studies on MSC and cancer cell response to the QD-Ce6 complex revealed the complex-loaded MSCs' potential to transport theranostic nanoparticles and induce cancer cell death. In vivo studies proved the therapeutic efficacy, as the survival of tumor-bearing mice was statistically significantly increased, while tumor progression and metastases were slowed down.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Lewis Lung/diagnostic imaging , Carcinoma, Lewis Lung/drug therapy , Mesenchymal Stem Cells/metabolism , Multifunctional Nanoparticles/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/radiation effects , Cadmium Compounds/chemistry , Cadmium Compounds/metabolism , Cadmium Compounds/radiation effects , Cadmium Compounds/therapeutic use , Carcinoma, Lewis Lung/metabolism , Cell Line, Tumor , Chlorophyllides/chemistry , Chlorophyllides/metabolism , Chlorophyllides/radiation effects , Chlorophyllides/therapeutic use , Female , Humans , Light , Mice, Inbred C57BL , Multifunctional Nanoparticles/chemistry , Multifunctional Nanoparticles/metabolism , Multifunctional Nanoparticles/radiation effects , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/metabolism , Photosensitizing Agents/radiation effects , Photosensitizing Agents/therapeutic use , Precision Medicine/methods , Quantum Dots/chemistry , Quantum Dots/metabolism , Quantum Dots/radiation effects , Quantum Dots/therapeutic use , Selenium Compounds/chemistry , Selenium Compounds/metabolism , Selenium Compounds/radiation effects , Selenium Compounds/therapeutic use , Singlet Oxygen/metabolism , Sulfides/chemistry , Sulfides/metabolism , Sulfides/radiation effects , Sulfides/therapeutic use , Zinc Compounds/chemistry , Zinc Compounds/metabolism , Zinc Compounds/radiation effects , Zinc Compounds/therapeutic use
4.
Int J Nanomedicine ; 12: 8129-8142, 2017.
Article in English | MEDLINE | ID: mdl-29158674

ABSTRACT

PURPOSE: Cell-mediated delivery of nanoparticles is emerging as a new method of cancer diagnostics and treatment. Due to their inherent regenerative properties, adult mesenchymal stem cells (MSCs) are naturally attracted to wounds and sites of inflammation, as well as tumors. Such characteristics enable MSCs to be used in cellular hitchhiking of nanoparticles. In this study, MSCs extracted from the skin connective tissue were investigated as transporters of semiconductor nanocrystals quantum dots (QDs). MATERIALS AND METHODS: Cytotoxicity of carboxylated CdSe/ZnS QDs was assessed by lactate dehydrogenase cell viability assay. Quantitative uptake of QDs was determined by flow cytometry; their intracellular localization was evaluated by confocal microscopy. In vitro tumor-tropic migration of skin-derived MSCs was verified by Transwell migration assay. For in vivo migration studies of QD-loaded MSCs, human breast tumor-bearing immunodeficient mice were used. RESULTS: QDs were found to be nontoxic to MSCs in concentrations no more than 16 nM. The uptake studies showed a rapid QD endocytosis followed by saturating effects after 6 h of incubation and intracellular localization in the perinuclear region. In vitro migration of MSCs toward MDA-MB-231 breast cancer cells and their conditioned medium was up to nine times greater than the migration toward noncancerous breast epithelial cells MCF-10A. In vivo, systemically administered QD-labeled MSCs were mainly located in the tumor and metastatic tissues, evading most healthy organs with the exception being blood clearance organs (spleen, kidneys, liver). CONCLUSION: Skin-derived MSCs demonstrate applicability in cell-mediated delivery of nanoparticles. The findings presented in this study promise further development of a cell therapy and nanotechnology-based tool for early cancer diagnostics and therapy.


Subject(s)
Breast Neoplasms/pathology , Mesenchymal Stem Cells/cytology , Quantum Dots/chemistry , Skin/cytology , Animals , Cell Death , Cell Line, Tumor , Cell Movement , Cell Shape , Dynamic Light Scattering , Endocytosis , Female , Humans , Mice, SCID , Nanoparticles/chemistry , Particle Size
5.
Reprod Toxicol ; 73: 222-231, 2017 10.
Article in English | MEDLINE | ID: mdl-28843702

ABSTRACT

The increasing use of nanoparticles in consumer products raises the concerns of their safety. This study investigated the biological effects of quantum dots (QD) exposure to rats during pregnancy. CdTe QD were injected on the 13th gestation day. Morphological features of 121 fetuses and histological analysis of placentas were performed on the 20th gestation day. The results showed that QD exhibit dose dependent embryotoxicity: survival rates of fetuses were 97% (5mg/kg dose), 86% (10mg/kg dose) and 43% (20mg/kg dose). QD exposure also resulted in the reduction of fetal body length and mass, disturbed ossification of limbs and caused placental tissue damage. QD exhibit no teratogenic effects at the applied doses. It is hypothesized that embryogenesis was impeded due to the placental damage rather than QD penetration and accumulation in the fetuses. To conclude, mothers should be protected from QD exposure during pregnancy.


Subject(s)
Cadmium Compounds/toxicity , Placenta/drug effects , Quantum Dots/toxicity , Tellurium/toxicity , Animals , Embryo, Mammalian/drug effects , Embryonic Development/drug effects , Female , Fetus/drug effects , Maternal-Fetal Exchange , Pregnancy , Rats, Wistar
6.
Oncol Lett ; 13(6): 4190-4200, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28599420

ABSTRACT

In clinical practice ionizing radiation (IR) is primarily applied to cancer treatment in the form of fractionated dose (FD) irradiation. Despite this fact, a substantially higher amount of current knowledge in the field of radiobiology comes from in vitro studies based on the cellular response to single dose (SD) irradiation. In addition, intrinsic and acquired resistance to IR remains an issue in clinical practice, leading to radiotherapy treatment failure. Numerous previous studies suggest that an improved understanding of the molecular processes involved in the radiation-induced DNA damage response to FD irradiation could improve the effectiveness of radiotherapy. Therefore, the present study examined the differential expression of genes and microRNA (miRNA) in murine Lewis lung cancer (LLC)1 cells exposed to SD or FD irradiation. The results of the present study indicated that the gene and miRNA expression profiles of LLC1 cells exposed to irradiation were dose delivery type-dependent. Data analysis also revealed that mRNAs may be regulated by miRNAs in a radiation-dependent manner, suggesting that these mRNAs and miRNAs are the potential targets in the cellular response to SD or FD irradiation. However, LLC1 tumors after FD irradiation exhibited no significant changes in the expression of selected genes and miRNAs observed in the irradiated cells in vitro, suggesting that experimental in vitro conditions, particularly the tumor microenvironment, should be considered in detail to promote the development of efficient radiotherapy approaches. Nevertheless, the present study highlights the primary signaling pathways involved in the response of murine cancer cells to irradiation. Data presented in the present study can be applied to improve the outcome and development of radiotherapy in preclinical animal model settings.

7.
BMC Cancer ; 16(1): 789, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27729023

ABSTRACT

BACKGROUND: The extracellular matrix (ECM), one of the key components of tumor microenvironment, has a tremendous impact on cancer development and highly influences tumor cell features. ECM affects vital cellular functions such as cell differentiation, migration, survival and proliferation. Gene and protein expression levels are regulated in cell-ECM interaction dependent manner as well. The rate of unsuccessful clinical trials, based on cell culture research models lacking the ECM microenvironment, indicates the need for alternative models and determines the shift to three-dimensional (3D) laminin rich ECM models, better simulating tissue organization. Recognized advantages of 3D models suggest the development of new anticancer treatment strategies. This is among the most promising directions of 3D cell cultures application. However, detailed analysis at the molecular level of 2D/3D cell cultures and tumors in vivo is still needed to elucidate cellular pathways most promising for the development of targeted therapies. In order to elucidate which biological pathways are altered during microenvironmental shift we have analyzed whole genome mRNA and miRNA expression differences in LLC1 cells cultured in 2D or 3D culture conditions. METHODS: In our study we used DNA microarrays for whole genome analysis of mRNA and miRNA expression differences in LLC1 cells cultivated in 2D or 3D culture conditions. Next, we indicated the most common enriched functional categories using KEGG pathway enrichment analysis. Finally, we validated the microarray data by quantitative PCR in LLC1 cells cultured under 2D or 3D conditions or LLC1 tumors implanted in experimental animals. RESULTS: Microarray gene expression analysis revealed that 1884 genes and 77 miRNAs were significantly altered in LLC1 cells after 48 h cell growth under 2D and ECM based 3D cell growth conditions. Pathway enrichment results indicated metabolic pathway, MAP kinase, cell adhesion and immune response as the most significantly altered functional categories in LLC1 cells due to the microenvironmental shift from 2D to 3D. Comparison of the expression levels of selected genes and miRNA between LLC1 cells grown in 3D cell culture and LLC1 tumors implanted in the mouse model indicated correspondence between both model systems. CONCLUSIONS: Global gene and miRNA expression analysis in LLC1 cells under ECM microenvironment indicated altered immune response, adhesion and MAP kinase pathways. All these processes are related to tumor development, progression and treatment response, suggesting the most promising directions for the development of targeted therapies using the 3D cell culture models.


Subject(s)
Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/metabolism , Extracellular Matrix/metabolism , MicroRNAs/genetics , RNA, Messenger/genetics , Transcriptome , Tumor Microenvironment/genetics , Animals , Carcinoma, Lewis Lung/pathology , Cell Adhesion/genetics , Cell Line, Tumor , Cluster Analysis , Female , Gene Expression Profiling , Gene Regulatory Networks , Mice , RNA Interference
8.
Medicina (Kaunas) ; 48(5): 256-64, 2012.
Article in English | MEDLINE | ID: mdl-22864273

ABSTRACT

BACKGROUND AND OBJECTIVE. Nanotechnology works with substances at a nanometer scale, and it offers many solutions for biomedicine. Nanoparticles (NPs) have been shown as effective agents for imaging, drug delivery, pathogen detection, etc. However, to date, NP toxicity is poorly known. The aim of our study was to investigate the embryotoxicity and teratogenicity of quantum dots (QDs) at the different stages of rat embryogenesis. MATERIALS AND METHODS. Wistar rats were injected with CdSe/ZnS or CdTe QDs on the 6th, 13th, and 18th days of embryogenesis. Cyclophosphamide was chosen as a positive control of embryotoxicity. On the 21st day, the number of resorptions, weight, length, and external malformations of the embryos were estimated. Fluorescence spectroscopy and microscopy analysis were used to determine the accumulation of QDs in the tissues. RESULTS. Exposure to cyclophosphamide during the pregnancy decreased the embryonic weight and length when compared with the control group and produced numerous malformations. The effects depended on the stage of embryogenesis. Meanwhile, QDs did not cause any embryotoxic or teratogenic effects. However, CdTe QDs induced necrosis in the tissues of the peritoneal cavity. The necrotic tissues contained QDs with altered spectroscopic properties. Spectroscopic and microscopic tissue examination revealed that QDs accumulated in the placenta, but no penetration to the embryonic tissues was observed. CONCLUSIONS. QDs did not cause any direct embryotoxic or teratogenic effects, but they had adverse effects on the maternal organism. The observed QD effects and the long-term accumulation of QDs in the maternal organism may increase the risk of adverse effects on embryo development.


Subject(s)
Abnormalities, Drug-Induced/etiology , Cadmium Compounds/toxicity , Embryo, Mammalian/drug effects , Nanoparticles/toxicity , Quantum Dots , Selenium Compounds/toxicity , Sulfides/toxicity , Tellurium/toxicity , Zinc Compounds/toxicity , Animals , Cadmium Compounds/administration & dosage , Cyclophosphamide/administration & dosage , Cyclophosphamide/toxicity , Embryo, Mammalian/abnormalities , Embryonic Development/drug effects , Female , Nanoparticles/administration & dosage , Pregnancy , Rats , Selenium Compounds/administration & dosage , Sulfides/administration & dosage , Tellurium/administration & dosage , Zinc Compounds/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...