Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 11561, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28912498

ABSTRACT

Extracellular vesicles (EVs) play a pivotal role in cell-to-cell communication and have been shown to take part in several physiological and pathological processes. EVs have traditionally been purified by ultracentrifugation (UC), however UC has limitations, including resulting in, operator-dependant yields, EV aggregation and altered EV morphology, and moreover is time consuming. Here we show that commercially available bind-elute size exclusion chromatography (BE-SEC) columns purify EVs with high yield (recovery ~ 80%) in a time-efficient manner compared to current methodologies. This technique is reproducible and scalable, and surface marker analysis by bead-based flow cytometry revealed highly similar expression signatures compared with UC-purified samples. Furthermore, uptake of eGFP labelled EVs in recipient cells was comparable between BE-SEC and UC samples. Hence, the BE-SEC based EV purification method represents an important methodological advance likely to facilitate robust and reproducible studies of EV biology and therapeutic application.


Subject(s)
Chemical Fractionation/methods , Chromatography, Affinity , Chromatography, Gel , Extracellular Vesicles , Animals , Cell Line , Chromatography, Gel/methods , Extracellular Vesicles/metabolism , Extracellular Vesicles/ultrastructure , Humans , Mice , Proteins/metabolism , RNA/metabolism
3.
Nanomedicine ; 12(1): 163-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26500074

ABSTRACT

Exosomes are small 40-120 nm vesicles secreted by nearly all cells and are an important form of intercellular communication. Exosomes are abundant, stable, and highly bioavailable to tissues in vivo. Increasingly, exosomes are being recognized as potential therapeutics as they have the ability to elicit potent cellular responses in vitro and in vivo. Patient-derived exosomes have been employed as a novel cancer immunotherapy in several clinical trials, but at this point lack sufficient efficacy. Still other researchers have focused on modifying the content and function of exosomes in various ways, toward the end-goal of specialized therapeutic exosomes. Here we highlight major advances in the use of exosomes for cancer immunotherapy and exosome bioengineering followed by a discussion of focus areas for future research to generate potent therapeutic exosomes. From the Clinical Editor: Exosomes are small vesicles used by cells for intercellular communication. In this short article, the authors described the current status and the potential use of exosomes in the clinical setting.


Subject(s)
Exosomes/genetics , Exosomes/immunology , Genetic Engineering/methods , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Animals , Cancer Vaccines/immunology , Drug Design , Humans
4.
Nanomedicine ; 11(4): 879-83, 2015 May.
Article in English | MEDLINE | ID: mdl-25659648

ABSTRACT

Extracellular vesicles (EVs) are natural nanoparticles that mediate intercellular transfer of RNA and proteins and are of great medical interest; serving as novel biomarkers and potential therapeutic agents. However, there is little consensus on the most appropriate method to isolate high-yield and high-purity EVs from various biological fluids. Here, we describe a systematic comparison between two protocols for EV purification: ultrafiltration with subsequent liquid chromatography (UF-LC) and differential ultracentrifugation (UC). A significantly higher EV yield resulted from UF-LC as compared to UC, without affecting vesicle protein composition. Importantly, we provide novel evidence that, in contrast to UC-purified EVs, the biophysical properties of UF-LC-purified EVs are preserved, leading to a different in vivo biodistribution, with less accumulation in lungs. Finally, we show that UF-LC is scalable and adaptable for EV isolation from complex media types such as stem cell media, which is of huge significance for future clinical applications involving EVs. FROM THE CLINICAL EDITOR: Recent evidence suggests extracellular vesicles (EVs) as another route of cellular communication. These EVs may be utilized for future therapeutics. In this article, the authors compared ultrafiltration with size-exclusion liquid chromatography (UF-LC) and ultra-centrifugation (UC) for EV recovery.


Subject(s)
Cell-Derived Microparticles/chemistry , Cell-Derived Microparticles/ultrastructure , Chromatography, Gel , HEK293 Cells , Humans , Ultrafiltration
5.
J Biol Chem ; 289(48): 33513-28, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25324551

ABSTRACT

Class V myosins are actin-based motors with conserved functions in vesicle and organelle trafficking. Herein we report the discovery of a function for Myosin Vc in melanosome biogenesis as an effector of melanosome-associated Rab GTPases. We isolated Myosin Vc in a yeast two-hybrid screening for proteins that interact with Rab38, a Rab protein involved in the biogenesis of melanosomes and other lysosome-related organelles. Rab38 and its close homolog Rab32 bind to Myosin Vc but not to Myosin Va or Myosin Vb. Binding depends on residues in the switch II region of Rab32 and Rab38 and regions of the Myosin Vc coiled-coil tail domain. Myosin Vc also interacts with Rab7a and Rab8a but not with Rab11, Rab17, and Rab27. Although Myosin Vc is not particularly abundant on pigmented melanosomes, its knockdown in MNT-1 melanocytes caused defects in the trafficking of integral membrane proteins to melanosomes with substantially increased surface expression of Tyrp1, nearly complete loss of Tyrp2, and significant Vamp7 mislocalization. Knockdown of Myosin Vc in MNT-1 cells more than doubled the abundance of pigmented melanosomes but did not change the number of unpigmented melanosomes. Together the data demonstrate a novel role for Myosin Vc in melanosome biogenesis and secretion.


Subject(s)
Melanocytes/metabolism , Melanosomes/metabolism , Myosin Type V/metabolism , rab GTP-Binding Proteins/metabolism , Cell Line , Humans , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Melanocytes/cytology , Melanosomes/genetics , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Myosin Type V/genetics , Oxidoreductases/genetics , Oxidoreductases/metabolism , rab GTP-Binding Proteins/genetics
6.
Small GTPases ; 4(1): 16-21, 2013.
Article in English | MEDLINE | ID: mdl-23247405

ABSTRACT

Lysosome-related organelles (LROs) exist in specialized cells to serve specific functions and typically co-exist with conventional lysosomes. The biogenesis of LROs is known to utilize much of the common protein machinery used in the transport of integral membrane proteins to lysosomes. Consequently, an outstanding question in the field has been how specific cargoes are trafficked to LROs instead of lysosomes, particularly in cells that simultaneously produce both organelles. One LRO, the melanosome, is responsible for the production of the pigment melanin and has long been used as a model system to study the formation of specialized LROs. Importantly, melanocytes, where melanosomes are synthesized, are a cell type that also produces lysosomes and must therefore segregate traffic to each organelle. Two small GTPases, Rab32 and Rab38, are key proteins in the biogenesis of melanosomes and were recently shown to redirect the ubiquitous machinery-BLOC-2, AP-1 and AP-3-to traffic specialized cargoes to melanosomes in melanocytes. In addition, the study revealed Rab32 and Rab38 have both redundant and unique roles in the trafficking of melanin-producing enzymes and overall melanosome biogenesis. Here we review these findings, integrate them with previous knowledge on melanosome biogenesis and discuss their implications for biogenesis of other LROs.


Subject(s)
Lysosomes/metabolism , Melanosomes/metabolism , rab GTP-Binding Proteins/metabolism , Adaptor Protein Complex 1/analysis , Adaptor Protein Complex 1/metabolism , Adaptor Protein Complex 3/analysis , Adaptor Protein Complex 3/metabolism , Animals , Humans , Melanins/metabolism , Melanocytes/metabolism , Protein Transport , rab GTP-Binding Proteins/analysis
7.
J Biol Chem ; 287(23): 19550-63, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22511774

ABSTRACT

Lysosome-related organelles (LROs) are synthesized in specialized cell types where they largely coexist with conventional lysosomes. Most of the known cellular transport machinery involved in biogenesis are ubiquitously expressed and shared between lysosomes and LROs. Examples of common components are the adaptor protein complex-3 (AP-3) and biogenesis of lysosome-related organelle complex (BLOC)-2. These protein complexes control sorting and transport of newly synthesized integral membrane proteins from early endosomes to both lysosomes and LROs such as the melanosome. However, it is unknown what factors cooperate with the ubiquitous transport machinery to mediate transport to LROs in specialized cells. Focusing on the melanosome, we show that the ubiquitous machinery interacts with cell type-specific Rab proteins, Rab38 and Rab32, to facilitate transport to the maturing organelle. BLOC-2, AP-3, and AP-1 coimmunoprecipitated with Rab38 and Rab32 from MNT-1 melanocytic cell extracts. BLOC-2, AP-3, AP-1, and clathrin partially colocalized with Rab38 and Rab32 by confocal immunofluorescence microscopy in MNT-1 cells. Rab38- and Rab32-deficient MNT-1 cells displayed abnormal trafficking and steady state levels of known cargoes of the BLOC-2, AP-3, and AP-1 pathways, the melanin-synthesizing enzymes tyrosinase and tyrosinase-related protein-1. These observations support the idea that Rab38 and Rab32 are the specific factors that direct the ubiquitous machinery to mediate transport from early endosomes to maturing LROs. Additionally, analysis of tyrosinase-related protein-2 and total melanin production indicates that Rab32 has unique functions that cannot be carried out by Rab38 in melanosome biogenesis.


Subject(s)
Adaptor Protein Complex 3/metabolism , Carrier Proteins/metabolism , Endosomes/metabolism , Lysosomes/metabolism , Melanosomes/metabolism , rab GTP-Binding Proteins/metabolism , Adaptor Protein Complex 3/genetics , Carrier Proteins/genetics , Cell Line , Endosomes/genetics , Humans , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Lysosomes/genetics , Melanins/genetics , Melanins/metabolism , Melanosomes/genetics , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Protein Transport/physiology , rab GTP-Binding Proteins/genetics
8.
J Vis Exp ; (47)2011 Jan 26.
Article in English | MEDLINE | ID: mdl-21307828

ABSTRACT

A major endocytic pathway initiates with the formation of clathrin-coated vesicles (CCVs) that transport cargo from the cell surface to endosomes. CCVs are distinguished by a polyhedral lattice of clathrin that coats the vesicle membrane and serves as a mechanical scaffold. Clathrin coats are assembled during vesicle formation from individual clathrin triskelia , the soluble form of clathrin composed of three heavy and three light chain subunits. Because the triskelion does not have the ability to bind to the membrane directly, clathrin-binding adaptors are critical to link the forming clathrin lattice to the membrane through association with lipids and/or membrane proteins. Adaptors also package transmembrane protein cargo, such as receptors, and can interact with each other and with other components of the CCV formation machinery. Over twenty clathrin adaptors have been described, several are involved in clathrin mediated endocytosis and others localize to the trans Golgi network or endosomes. With the exception of HIP1R (yeast Sla2p), all known clathrin adaptors bind to the N-terminal -propeller domain of the clathrin heavy chain. Clathrin adaptors are modular proteins consisting of folded domains connected by unstructured flexible linkers. Within these linker regions, short binding motifs mediate interactions with the clathrin N-terminal domain or other components of the vesicle formation machinery. Two distinct clathrin-binding motifs have been defined: the clathrin-box and the W-box. The consensus clathrin-box sequence was originally defined as L[L/I][D/E/N][L/F][D/E] but variants have been subsequently discovered. The W-box conforms to the sequence PWxxW (where x is any residue). Sla1p (Synthetic Lethal with Actin binding protein-1) was originally identified as an actin associated protein and is necessary for normal actin cytoskeleton structure and dynamics at endocytic sites in yeast cells. Sla1p also binds the NPFxD endocytic sorting signal and is critical for endocytosis of cargo bearing the NPFxD signal. More recently, Sla1p was demonstrated to bind clathrin through a motif similar to the clathrin box, LLDLQ, termed a variant clathrin-box (vCB), and to function as an endocytic clathrin adaptor. In addition, Sla1p has become a widely used marker for the endocytic coat in live cell fluorescence microscopy studies. Here we use Sla1p as a model to describe approaches for adaptor-clathrin interaction studies. We focus on live cell fluorescence microscopy, GST-pull down, and co-immunoprecipitation methods.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Clathrin-Coated Vesicles/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Microscopy, Fluorescence , Mutation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...