Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(23)2023 12 01.
Article in English | MEDLINE | ID: mdl-38067184

ABSTRACT

The European Bank for induced pluripotent Stem Cells (EBiSC) was established in 2014 as a non-profit project for the banking, quality control, and distribution of human iPSC lines for research around the world. EBiSC iPSCs are deposited from diverse laboratories internationally and, hence, a key activity for EBiSC is standardising not only the iPSC lines themselves but also the data associated with them. This includes enabling unique nomenclature for the cells, as well as applying uniformity to the data provided by the cell line generator versus quality control data generated by EBiSC, and providing mechanisms to share personal data in a secure and GDPR-compliant manner. A joint approach implemented by EBiSC and the human pluripotent stem cell registry (hPSCreg®) has provided a solution that enabled hPSCreg® to improve its registration platform for iPSCs and EBiSC to have a pipeline for the import, standardisation, storage, and management of data associated with EBiSC iPSCs. In this work, we describe the experience of cell line data management for iPSC banking throughout the course of EBiSC's development as a central European banking infrastructure and present a model for how this could be implemented by other iPSC repositories to increase the FAIRness of iPSC research globally.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Cell Line , Registries , Reference Standards
2.
Stem Cell Reports ; 18(8): 1592-1598, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37028422

ABSTRACT

The Human Pluripotent Stem Cell Registry established a database of clinical studies using human pluripotent stem cells (PSCs) as starting material for cell therapies. Since 2018, we have observed a switch toward human induced pluripotent stem cells (iPSCs) from human embryonic stem cells. However, rather than using iPSCs for personalized medicines, allogeneic approaches dominate. Most treatments target ophthalmopathies, and genetically modified iPSCs are used to generate tailored cells. We observe a lack of standardization and transparency about the PSCs lines used, characterization of the PSC-derived cells, and the preclinical models and assays applied to show efficacy and safety.


Subject(s)
Human Embryonic Stem Cells , Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Cell Differentiation , Cell- and Tissue-Based Therapy
3.
Stem Cell Res ; 47: 101887, 2020 Jun 27.
Article in English | MEDLINE | ID: mdl-32707486

ABSTRACT

The value of human pluripotent stem cells (hPSC) in regenerative medicine has yet to reach its full potential. The road from basic research tool to clinically validated PSC-derived cell therapy products is a long and winding one, leading researchers, clinicians, industry and regulators alike into undiscovered territory. All stakeholders must work together to ensure the development of safe and effective cell therapies. Similarly, utilization of hPSC in meaningful and controlled disease modeling and drug screening applications requires information on the quality and suitability of the applied cell lines. Central to these common goals is the complete documentation of hPSC data, including the ethical provenance of the source material, the hPSC line derivation, culture conditions and genetic constitution of the lines. Data surrounding hPSC is scattered amongst diverse sources, including publications, supplemental data, researcher lab books, accredited lab reports, certificates of analyses and public data repositories. Not all of these data sources are publicly accessible nor associated with metadata nor stored in a standard manner, such that data can be easily found and retrieved. The Human Pluripotent Stem Cell Registry (hPSCreg; https://hpscreg.eu/) was started in 2007 to impart provenance and transparency towards hPSC research by registering and collecting standard properties of hPSC lines. In this chapter, we present a short primer on the history of stem cell-based products, summarize the ethical and regulatory issues introduced in the course of working with hPSC-derived products and their associated data, and finally present the Human Pluripotent Stem Cell Registry as a valuable resource for all stakeholders in therapies and disease modeling based on hPSC-derived cells.

4.
Stem Cell Reports ; 15(2): 546-555, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32679065

ABSTRACT

The last 5 years have witnessed a significant increase in the number of clinical studies based on human pluripotent stem cells (hPSCs). In parallel, concern is increasing about the proliferation of unregulated stem cell treatments worldwide. Regulated clinical testing is a de facto standard to establish the safety and efficacy of new cell therapies, yet reliable information on clinical studies involving hPSCs is scattered. Our analysis of a multitude of resources found 54 clinical studies involving several types of hPSCs, which are performed in ten countries. While the majority of those studies is based on human embryonic stem cells (hESCs), clinical studies involving human induced pluripotent stem cells increased more strongly in the past 2 years than the number of hESC-based studies. A publicly accessible database was created using the human pluripotent stem cell registry (https://hpscreg.eu) platform, providing a steadily updated comprehensive overview on hPSC-based clinical studies performed worldwide.


Subject(s)
Data Curation , Databases as Topic , Induced Pluripotent Stem Cells/cytology , Cell Line , Clinical Trials as Topic , Human Embryonic Stem Cells/cytology , Humans , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...