Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Vascul Pharmacol ; 133-134: 106777, 2020.
Article in English | MEDLINE | ID: mdl-32750408

ABSTRACT

Atherosclerosis is a systemic chronic inflammatory disease. Many antioxidants including alpha-lipoic acid (LA), a product of lipoic acid synthase (Lias), have proven to be effective for treatment of this disease. However, the question remains whether LA regulates the immune response as a protective mechanism against atherosclerosis. We initially investigated whether enhanced endogenous antioxidant can retard the development of atherosclerosis via immunomodulation. To explore the impact of enhanced endogenous antioxidant on the retardation of atherosclerosis via immune regulation, our laboratory has recently created a double mutant mouse model, using apolipoprotein E-deficient (Apoe-/-) mice crossbred with mice overexpressing lipoic acid synthase gene (LiasH/H), designated as LiasH/HApoe-/- mice. Their littermates, Lias+/+Apoe-/- mice, served as a control. Distinct redox environments between the two strains of mice have been established and they can be used to facilitate identification of antioxidant targets in the immune response. At 6 months of age, LiasH/HApoe-/- mice had profoundly decreased atherosclerotic lesion size in the aortic sinus compared to their Lias+/+Apoe-/- littermates, accompanied by significantly enhanced numbers of regulatory T cells (Tregs) and anti-oxidized LDL autoantibody in the vascular system, and reduced T cell infiltrates in aortic walls. Our results represent a novel exploration into an environment with increased endogenous antioxidant and its ability to alleviate atherosclerosis, likely through regulation of the immune response. These outcomes shed light on a new therapeutic strategy using antioxidants to lessen atherosclerosis.


Subject(s)
Aorta/enzymology , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Plaque, Atherosclerotic , Sulfurtransferases/biosynthesis , Animals , Aorta/immunology , Aorta/pathology , Aortic Diseases/enzymology , Aortic Diseases/immunology , Aortic Diseases/pathology , Atherosclerosis/enzymology , Atherosclerosis/immunology , Atherosclerosis/pathology , Autoantibodies/blood , Disease Models, Animal , Enzyme Induction , Lipoproteins, LDL/immunology , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Oxidation-Reduction , Oxidative Stress , Sulfurtransferases/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
2.
Genes Environ ; 42: 21, 2020.
Article in English | MEDLINE | ID: mdl-32514323

ABSTRACT

BACKGROUND: Exogenous formaldehyde is classified by the IARC as a Category 1 known human carcinogen. Meanwhile, a significant amount of endogenous formaldehyde is produced in the human body; as such, formaldehyde-derived DNA and protein adducts have been detected in animals and humans in the absence of major exogenous formaldehyde exposure. However, the toxicological effects of endogenous formaldehyde on individuals with normal DNA damage repair functions are not well understood. In this study, we attempted to generate C57BL/6 mice deficient in both Adh5 and Aldh2, which encode two major enzymes that metabolize endogenous formaldehyde, in order to understand the effects of endogenous formaldehyde on mice with normal DNA repair function. RESULTS: Due to deficiencies in both ADH5 and ALDH2, few mice survived past post-natal day 21. In fact, the survival of pups within the first few days after birth was significantly decreased. Remarkably, two Aldh2 -/- /Adh5 -/- mice survived for 25 days after birth, and we measured their total body weight and organ weights. The body weight of Aldh2 -/- /Adh5 -/- mice decreased significantly by almost 37% compared to the Aldh2 -/- /Adh5 +/- and Aldh2 -/- /Adh5 +/+ mice of the same litter. In addition, the absolute weight of each organ was also significantly reduced. CONCLUSION: Mice deficient in both formaldehyde-metabolizing enzymes ADH5 and ALDH2 were found to develop partial synthetic lethality and mortality shortly after birth. This phenotype may be due to the accumulation of endogenous formaldehyde. No serious phenotype has been reported in people with dysfunctional, dominant-negative ALDH2*2 alleles, but it has been reported that they may be highly susceptible to osteoporosis and neurodegenerative diseases. It is important to further investigate these diseases in individuals with ALDH2*2 alleles, including an association with decreased metabolism, and thus accumulation, of formaldehyde.

3.
Proc Natl Acad Sci U S A ; 117(13): 7374-7381, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32170007

ABSTRACT

Irinotecan treats a range of solid tumors, but its effectiveness is severely limited by gastrointestinal (GI) tract toxicity caused by gut bacterial ß-glucuronidase (GUS) enzymes. Targeted bacterial GUS inhibitors have been shown to partially alleviate irinotecan-induced GI tract damage and resultant diarrhea in mice. Here, we unravel the mechanistic basis for GI protection by gut microbial GUS inhibitors using in vivo models. We use in vitro, in fimo, and in vivo models to determine whether GUS inhibition alters the anticancer efficacy of irinotecan. We demonstrate that a single dose of irinotecan increases GI bacterial GUS activity in 1 d and reduces intestinal epithelial cell proliferation in 5 d, both blocked by a single dose of a GUS inhibitor. In a tumor xenograft model, GUS inhibition prevents intestinal toxicity and maintains the antitumor efficacy of irinotecan. Remarkably, GUS inhibitor also effectively blocks the striking irinotecan-induced bloom of Enterobacteriaceae in immune-deficient mice. In a genetically engineered mouse model of cancer, GUS inhibition alleviates gut damage, improves survival, and does not alter gut microbial composition; however, by allowing dose intensification, it dramatically improves irinotecan's effectiveness, reducing tumors to a fraction of that achieved by irinotecan alone, while simultaneously promoting epithelial regeneration. These results indicate that targeted gut microbial enzyme inhibitors can improve cancer chemotherapeutic outcomes by protecting the gut epithelium from microbial dysbiosis and proliferative crypt damage.


Subject(s)
Gastrointestinal Microbiome/drug effects , Glucuronidase/antagonists & inhibitors , Glucuronidase/drug effects , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Bacteria/drug effects , Disease Models, Animal , Dysbiosis/drug therapy , Enzyme Inhibitors/pharmacology , Female , Glucuronidase/metabolism , Humans , Irinotecan/pharmacology , Mice , Mice, Nude , Neoplasms/drug therapy
5.
Nat Microbiol ; 4(2): 375, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30607002

ABSTRACT

In the version of this News & Views originally published, owing to production error, the concentration scales given for butyrate circulates in the bloodstream and colon were incorrect. It was stated that "butyrate circulates at mM levels (as opposed to µM in colon)"; this should have read "butyrate circulates at µM levels (as opposed to mM in colon)". This error has now been corrected.

6.
Nat Microbiol ; 3(12): 1332-1333, 2018 12.
Article in English | MEDLINE | ID: mdl-30478384
7.
Trends Endocrinol Metab ; 29(8): 529-531, 2018 08.
Article in English | MEDLINE | ID: mdl-29884327

ABSTRACT

In a recent Cell Reports article, Li et al. report that obesity is associated with altered fatty acid metabolism and DNA methylation in the colonic epithelium, which precede a tumor-prone gene-expression profile. Interestingly, obesity-associated methylation and transcriptome changes were reversed by weight loss, and the duration of weight loss correlated with the extent of restored gene expression. These findings have implications that are encouraging for weight loss and cancer prevention.


Subject(s)
Colorectal Neoplasms , Epigenesis, Genetic , Animals , DNA , Diet , Mice , Obesity/genetics , Transcriptome
8.
Cell Mol Gastroenterol Hepatol ; 5(2): 113-130, 2018.
Article in English | MEDLINE | ID: mdl-29693040

ABSTRACT

BACKGROUND & AIMS: The successful culture of intestinal organoids has greatly enhanced our understanding of intestinal stem cell physiology and enabled the generation of novel intestinal disease models. Although of tremendous value, intestinal organoid culture systems have not yet fully recapitulated the anatomy or physiology of the in vivo intestinal epithelium. The aim of this work was to re-create an intestinal epithelium with a high density of polarized crypts that respond in a physiologic manner to addition of growth factors, metabolites, or cytokines to the basal or luminal tissue surface as occurs in vivo. METHODS: A self-renewing monolayer of human intestinal epithelium was cultured on a collagen scaffold microfabricated with an array of crypt-like invaginations. Placement of chemical factors in either the fluid reservoir below or above the cell-covered scaffolding created a gradient of that chemical across the growing epithelial tissue possessing the in vitro crypt structures. Crypt polarization (size of the stem/proliferative and differentiated cell zones) was assessed in response to gradients of growth factors, cytokines, and bacterial metabolites. RESULTS: Chemical gradients applied to the shaped human epithelium re-created the stem/proliferative and differentiated cell zones of the in vivo intestine. Short-chain fatty acids applied as a gradient from the luminal side confirmed long-standing hypotheses that butyrate diminished stem/progenitor cell proliferation and promoted differentiation into absorptive colonocytes. A gradient of interferon-γ and tumor necrosis factor-α significantly suppressed the stem/progenitor cell proliferation, altering crypt formation. CONCLUSIONS: The in vitro human colon crypt array accurately mimicked the architecture, luminal accessibility, tissue polarity, cell migration, and cellular responses of in vivo intestinal crypts.

9.
ACS Infect Dis ; 4(1): 46-52, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29094594

ABSTRACT

The intestinal epithelium provides a critical barrier that separates the gut microbiota from host tissues. Nonsteroidal anti-inflammatory drugs (NSAIDs) are efficacious analgesics and antipyretics and are among the most frequently used drugs worldwide. In addition to gastric damage, NSAIDs are toxic to the intestinal epithelium, causing erosions, perforations, and longitudinal ulcers in the gut. Here, we use a unique in vitro human primary small intestinal cell monolayer system to pinpoint the intestinal consequences of NSAID treatment. We found that physiologically relevant doses of the NSAID diclofenac (DCF) are cytotoxic because they uncouple mitochondrial oxidative phosphorylation and generate reactive oxygen species. We also find that DCF induces intestinal barrier permeability, facilitating the translocation of compounds from the luminal to the basolateral side of the intestinal epithelium. The results we outline here establish the utility of this novel platform, representative of the human small intestinal epithelium, to understand NSAID toxicity, which can be applied to study multiple aspects of gut barrier function including defense against infectious pathogens and host-microbiota interactions.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Cell Membrane Permeability/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Humans , Mitochondria/drug effects , Mitochondria/metabolism
10.
Cell Mol Gastroenterol Hepatol ; 4(1): 165-182.e7, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29204504

ABSTRACT

BACKGROUND & AIMS: Three-dimensional organoid culture has fundamentally changed the in vitro study of intestinal biology enabling novel assays; however, its use is limited because of an inaccessible luminal compartment and challenges to data gathering in a three-dimensional hydrogel matrix. Long-lived, self-renewing 2-dimensional (2-D) tissue cultured from primary colon cells has not been accomplished. METHODS: The surface matrix and chemical factors that sustain 2-D mouse colonic and human rectal epithelial cell monolayers with cell repertoires comparable to that in vivo were identified. RESULTS: The monolayers formed organoids or colonoids when placed in standard Matrigel culture. As with the colonoids, the monolayers exhibited compartmentalization of proliferative and differentiated cells, with proliferative cells located near the peripheral edges of growing monolayers and differentiated cells predominated in the central regions. Screening of 77 dietary compounds and metabolites revealed altered proliferation or differentiation of the murine colonic epithelium. When exposed to a subset of the compound library, murine organoids exhibited similar responses to that of the monolayer but with differences that were likely attributable to the inaccessible organoid lumen. The response of the human primary epithelium to a compound subset was distinct from that of both the murine primary epithelium and human tumor cells. CONCLUSIONS: This study demonstrates that a self-renewing 2-D murine and human monolayer derived from primary cells can serve as a physiologically relevant assay system for study of stem cell renewal and differentiation and for compound screening. The platform holds transformative potential for personalized and precision medicine and can be applied to emerging areas of disease modeling and microbiome studies.

11.
Sci Rep ; 7(1): 10787, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28883613

ABSTRACT

Endogenous formaldehyde is abundantly present in our bodies, at around 100 µM under normal conditions. While such high steady state levels of formaldehyde may be derived by enzymatic reactions including oxidative demethylation/deamination and myeloperoxidation, it is unclear whether endogenous formaldehyde can initiate and/or promote diseases in humans. Here, we show that fluorescent malondialdehyde-formaldehyde (M2FA)-lysine adducts are immunogenic without adjuvants in mice. Natural antibody titers against M2FA are elevated in atherosclerosis-prone mice. Staining with an antibody against M2FA demonstrated that M2FA is present in plaque found on the aortic valve of ApoE -/- mice. To mimic inflammation during atherogenesis, human myeloperoxidase was incubated with glycine, H2O2, malondialdehyde, and a lysine analog in PBS at a physiological temperature, which resulted in M2FA generation. These results strongly suggest that the 1,4-dihydropyridine-type of lysine adducts observed in atherosclerosis lesions are likely produced by endogenous formaldehyde and malondialdehyde with lysine. These highly fluorescent M2FA adducts may play important roles in human inflammatory and degenerative diseases.


Subject(s)
Atherosclerosis/immunology , Atherosclerosis/metabolism , Epitopes/immunology , Formaldehyde/metabolism , Animals , Apolipoproteins E/deficiency , Chromatography, Liquid , Formaldehyde/chemistry , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Mice , Mice, Knockout , Molecular Structure , Peroxidase/metabolism , Plaque, Atherosclerotic/immunology , Plaque, Atherosclerotic/metabolism
12.
Int J Clin Exp Med ; 10(1): 1051-1058, 2017.
Article in English | MEDLINE | ID: mdl-28794819

ABSTRACT

The cellular environment of the mammalian heart constantly is challenged with environmental and intrinsic pathological insults, which affect the proper folding of proteins in heart failure. The effects of damaged or misfolded proteins on the cell can be profound and result in a process termed "proteotoxicity". While proteotoxicity is best known for its role in mediating the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, its role in human heart failure also has been recognized. The UPR involves three branches, including PERK, ATF6, and IRE1. In the presence of a misfolded protein, the GRP78 molecular chaperone that normally interacts with the receptors PERK, ATF6, and IRE-1 in the endoplasmic reticulum detaches to attempt to stabilize the protein. Mouse models of cardiac hypertrophy, ischemia, and heart failure demonstrate increases in activity of all three branches after removing GRP78 from these internal receptors. Recent studies have linked elevated PERK and CHOP in vitro with regulation of ion channels linked with human systolic heart failure. With this in mind, we specifically investigated ventricular myocardium from 10 patients with a history of conduction system defects or arrhythmias for expression of UPR and autophagy genes compared to myocardium from non-failing controls. We identified elevated Chop, Atf3, and Grp78 mRNA, along with XBP-1-regulated Cebpa mRNA, indicative of activation of the UPR in human heart failure with arrhythmias.

13.
CA Cancer J Clin ; 67(4): 326-344, 2017 07 08.
Article in English | MEDLINE | ID: mdl-28481406

ABSTRACT

Answer questions and earn CME/CNE The human body harbors enormous numbers of microbiota that influence cancer susceptibility, in part through their prodigious metabolic capacity and their profound influence on immune cell function. Microbial pathogens drive tumorigenesis in 15% to 20% of cancer cases. Even larger numbers of malignancies are associated with an altered composition of commensal microbiota (dysbiosis) based on microbiome studies using metagenomic sequencing. Although association studies cannot distinguish whether changes in microbiota are causes or effects of cancer, a causative role is supported by rigorously controlled preclinical studies using gnotobiotic mouse models colonized with one or more specific bacteria. These studies demonstrate that microbiota can alter cancer susceptibility and progression by diverse mechanisms, such as modulating inflammation, inducing DNA damage, and producing metabolites involved in oncogenesis or tumor suppression. Evidence is emerging that microbiota can be manipulated for improving cancer treatment. By incorporating probiotics as adjuvants for checkpoint immunotherapy or by designing small molecules that target microbial enzymes, microbiota can be harnessed to improve cancer care. CA Cancer J Clin 2017;67:326-344. © 2017 American Cancer Society.


Subject(s)
Microbiota , Neoplasms/microbiology , Neoplasms/therapy , Animals , Carcinogenesis , Disease Models, Animal , Disease Progression , Disease Susceptibility , Dysbiosis , Humans , Metagenomics , Precision Medicine
14.
Cancer Res ; 77(9): 2500-2511, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28373182

ABSTRACT

The association between obesity and breast cancer risk and prognosis is well established in estrogen receptor (ER)-positive disease but less clear in HER2-positive disease. Here, we report preclinical evidence suggesting weight maintenance through calorie restriction (CR) may limit risk of HER2-positive breast cancer. In female MMTV-HER2/neu transgenic mice, we found that ERα and ERß expression, mammary tumorigenesis, and survival are energy balance dependent in association with epigenetic reprogramming. Mice were randomized to receive a CR, overweight-inducing, or diet-induced obesity regimen (n = 27/group). Subsets of mice (n = 4/group/time point) were euthanized after 1, 3, and 5 months to characterize diet-dependent metabolic, transcriptional, and epigenetic perturbations. Remaining mice were followed up to 22 months. Relative to the overweight and diet-induced obesity regimens, CR decreased body weight, adiposity, and serum metabolic hormones as expected and also elicited an increase in mammary ERα and ERß expression. Increased DNA methylation accompanied this pattern, particularly at CpG dinucleotides located within binding or flanking regions for the transcriptional regulator CCCTC-binding factor of ESR1 and ESR2, consistent with sustained transcriptional activation of ERα and ERß. Mammary expression of the DNA methylation enzyme DNMT1 was stable in CR mice but increased over time in overweight and diet-induced obesity mice, suggesting CR obviates epigenetic alterations concurrent with chronic excess energy intake. In the survival study, CR elicited a significant suppression in spontaneous mammary tumorigenesis. Overall, our findings suggest a mechanistic rationale to prevent or reverse excess body weight as a strategy to reduce HER2-positive breast cancer risk. Cancer Res; 77(9); 2500-11. ©2017 AACR.


Subject(s)
Breast Neoplasms/genetics , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Mammary Neoplasms, Animal/genetics , Obesity/genetics , Animals , Breast Neoplasms/physiopathology , Caloric Restriction , Carcinogenesis/genetics , DNA Methylation/genetics , Energy Metabolism/genetics , Epigenesis, Genetic/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Mammary Neoplasms, Animal/etiology , Mammary Neoplasms, Animal/physiopathology , Mice , Mice, Transgenic , Obesity/complications , Obesity/physiopathology , Receptor, ErbB-2/genetics , Risk Factors
15.
Biomaterials ; 128: 44-55, 2017 06.
Article in English | MEDLINE | ID: mdl-28288348

ABSTRACT

The human small intestinal epithelium possesses a distinct crypt-villus architecture and tissue polarity in which proliferative cells reside inside crypts while differentiated cells are localized to the villi. Indirect evidence has shown that the processes of differentiation and migration are driven in part by biochemical gradients of factors that specify the polarity of these cellular compartments; however, direct evidence for gradient-driven patterning of this in vivo architecture has been hampered by limitations of the in vitro systems available. Enteroid cultures are a powerful in vitro system; nevertheless, these spheroidal structures fail to replicate the architecture and lineage compartmentalization found in vivo, and are not easily subjected to gradients of growth factors. In the current work, we report the development of a micropatterned collagen scaffold with suitable extracellular matrix and stiffness to generate an in vitro self-renewing human small intestinal epithelium that replicates key features of the in vivo small intestine: a crypt-villus architecture with appropriate cell-lineage compartmentalization and an open and accessible luminal surface. Chemical gradients applied to the crypt-villus axis promoted the creation of a stem/progenitor-cell zone and supported cell migration along the crypt-villus axis. This new approach combining microengineered scaffolds, biophysical cues and chemical gradients to control the intestinal epithelium ex vivo can serve as a physiologically relevant mimic of the human small intestinal epithelium, and is broadly applicable to model other tissues that rely on gradients for physiological function.


Subject(s)
Collagen/pharmacology , Intestinal Mucosa/physiology , Intestine, Small/physiology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Compartmentation , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cross-Linking Reagents/pharmacology , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Intestinal Mucosa/drug effects , Intestine, Small/drug effects , Mice , Organoids/drug effects , Porosity , Rats , Tissue Culture Techniques
16.
PLoS One ; 12(2): e0172172, 2017.
Article in English | MEDLINE | ID: mdl-28222187

ABSTRACT

Atherosclerosis is widely accepted to be a chronic inflammatory disease, and the immunological response to the accumulation of LDL is believed to play a critical role in the development of this disease. 1,4-Dihydropyridine-type MAA-adducted LDL has been implicated in atherosclerosis. Here, we have demonstrated that pure MAA-modified residues can be chemically conjugated to large proteins without by-product contamination. Using this pure antigen, we established a purified MAA-ELISA, with which a marked increase in anti-MAA antibody titer was determined at a very early stage of atherosclerosis in 3-month ApoE-/- mice fed with a normal diet. Our methods of Nε-MAA-L-lysine purification and purified antigen-based ELISA will be easily applicable for biomarker-based detection of early stage atherosclerosis in patients, as well as for the development of an adduct-specific Liquid Chromatography/Mass Spectrometry-based quantification of physiological and pathological levels of MAA.


Subject(s)
Acetaldehyde/immunology , Autoantibodies/immunology , Enzyme-Linked Immunosorbent Assay/methods , Malondialdehyde/immunology , Animals , Autoantibodies/blood , Female , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred C57BL , Sensitivity and Specificity
17.
J Mol Cell Cardiol ; 105: 99-109, 2017 04.
Article in English | MEDLINE | ID: mdl-28232072

ABSTRACT

RATIONALE: The contractile dysfunction that underlies heart failure involves perturbations in multiple biological processes ranging from metabolism to electrophysiology. Yet the epigenetic mechanisms that are altered in this disease state have not been elucidated. SWI/SNF chromatin-remodeling complexes are plausible candidates based on mouse knockout studies demonstrating a combined requirement for the BRG1 and BRM catalytic subunits in adult cardiomyocytes. Brg1/Brm double mutants exhibit metabolic and mitochondrial defects and are not viable although their cause of death has not been ascertained. OBJECTIVE: To determine the cause of death of Brg1/Brm double-mutant mice, to test the hypothesis that BRG1 and BRM are required for cardiac contractility, and to identify relevant downstream target genes. METHODS AND RESULTS: A tamoxifen-inducible gene-targeting strategy utilizing αMHC-Cre-ERT was implemented to delete both SWI/SNF catalytic subunits in adult cardiomyocytes. Brg1/Brm double-mutant mice were monitored by echocardiography and electrocardiography, and they underwent rapidly progressive ventricular dysfunction including conduction defects and arrhythmias that culminated in heart failure and death within 3weeks. Mechanistically, BRG1/BRM repressed c-Myc expression, and enforced expression of a DOX-inducible c-MYC trangene in mouse cardiomyocytes phenocopied the ventricular conduction defects observed in Brg1/Brm double mutants. BRG1/BRM and c-MYC had opposite effects on the expression of cardiac conduction genes, and the directionality was consistent with their respective loss- and gain-of-function phenotypes. To support the clinical relevance of this mechanism, BRG1/BRM occupancy was diminished at the same target genes in human heart failure cases compared to controls, and this correlated with increased c-MYC expression and decreased CX43 and SCN5A expression. CONCLUSION: BRG1/BRM and c-MYC have an antagonistic relationship regulating the expression of cardiac conduction genes that maintain contractility, which is reminiscent of their antagonistic roles as a tumor suppressor and oncogene in cancer.


Subject(s)
DNA Helicases/metabolism , Heart Conduction System , Myocardial Contraction , Myocytes, Cardiac/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Transcription Factors/metabolism , Animals , DNA Helicases/genetics , Electrocardiography , Gene Expression Profiling , Gene Expression Regulation , Heart Failure/diagnosis , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/physiopathology , Humans , Mice , Mice, Transgenic , Mutation , Myocardial Contraction/genetics , Nuclear Proteins/genetics , Protein Binding , Proto-Oncogene Proteins c-myc/genetics , Transcription Factors/genetics
18.
Mol Nutr Food Res ; 61(1)2017 01.
Article in English | MEDLINE | ID: mdl-27138454

ABSTRACT

Despite the success of colonoscopy screening, colorectal cancer (CRC) remains one of the most common and deadly cancers, and CRC incidence is rising in some countries where screening is not routine and populations have recently switched from traditional diets to western diets. Diet and energy balance influence CRC by multiple mechanisms. They modulate the composition and function of gut microbiota, which have a prodigious metabolic capacity and can produce oncometabolites or tumor-suppressive metabolites depending, in part, on which dietary factors and digestive components are present in the GI tract. Gut microbiota also have a profound effect on immune cells in the lamina propria, which influences inflammation and subsequently CRC. Nutrient availability, which is an outcome of diet and energy balance, determines the abundance of certain energy metabolites that are essential co-factors for epigenetic enzymes and therefore impinges upon epigenetic regulation of gene expression. Aberrant epigenetic marks accumulate during CRC, and epimutations that are selected for drive tumorigenesis by causing transcriptome profiles to diverge from the cell of origin. In some instances, the above mechanisms are intertwined as exemplified by dietary fiber being metabolized by colonic bacteria into butyrate, which is both a short-chain fatty acid (SCFA) and a histone deacetylase (HDAC) inhibitor that epigenetically upregulates tumor-suppressor genes in CRC cells and anti-inflammatory genes in immune cells.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology , Epigenesis, Genetic , Gastrointestinal Microbiome , Animals , Butyrates/metabolism , Colorectal Neoplasms/prevention & control , Diet , Dietary Fiber/pharmacology , Gastrointestinal Microbiome/genetics , Humans , Prebiotics , Probiotics/pharmacology
19.
ACS Biomater Sci Eng ; 3(10): 2502-2513, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-30854421

ABSTRACT

Organoid culture has had a significant impact on in vitro studies of the intestinal epithelium; however, the exquisite architecture, luminal accessibility, and lineage compartmentalization found in vivo has not been recapitulated in the organoid systems. We have used a microengineered platform with suitable extracellular matrix contacts and stiffness to generate a self-renewing mouse colonic epithelium that replicates key architectural and physiological functions found in vivo, including a surface lined with polarized crypts. Chemical gradients applied to the basal-luminal axis compartmentalized the stem/progenitor cells and promoted appropriate lineage differentiation along the in vitro crypt axis so that the tissue possessed a crypt stem cell niche as well as a layer of differentiated cells covering the luminal surface. This new approach combining microengineered scaffolds, native chemical gradients, and biophysical cues to control primary epithelium ex vivo can serve as a highly functional and physiologically relevant in vitro tissue model.

20.
Cell Metab ; 24(6): 775-777, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27974176

ABSTRACT

In a recent issue of Cell, Thaiss et al. (2016) report that gut microbiota exhibit diurnal rhythmicity in biogeographical localization and metabolomics during the 24 hr light-dark cycle. This oscillation, together with the host circadian clock, co-regulates the colonic and hepatic epigenome and transcriptome.


Subject(s)
Circadian Clocks , Microbiota , Circadian Rhythm , Gastrointestinal Microbiome , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...