Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 45(14): 3860, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32667303

ABSTRACT

This publisher's note contains corrections to Opt. Lett.45, 3557 (2020).OPLEDP0146-959210.1364/OL.396342.

2.
Opt Lett ; 45(13): 3557-3560, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630897

ABSTRACT

We report a novel, to the best of our knowledge, all-optical discrete multilevel time-lens (DM-TL) design based on cross-phase modulation (XPM). In this approach, the pump is synthesized such as the quadratic phase modulation is applied to the probe in constant-level time-bins with a maximum phase excursion of 2π. As a result, a considerable reduction in the required pump power is achieved in comparison to the conventional approach based on a parabolic pump. To illustrate the concept, the proposed DM-TL is here applied to the energy-preserving conversion of a continuous-wave (CW) signal into a train of pulses according to the theory of temporal Talbot array illuminators. We demonstrate CW-to-pulse conversion gains up to 12 at repetition rates exceeding 16 GHz, with a power saving with respect to the conventional parabolic TL that is more significant for increasing conversion gains.

3.
Opt Express ; 27(25): 36815-36823, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31873453

ABSTRACT

In this work we report a novel intensity-based technique for simultaneous high-speed and high-resolution interrogation of fiber Bragg grating (FBG) sensors. The method uses a couple of intensity Gaussian filters and the dispersion-induced wavelength-to-time mapping effect. The Bragg wavelength is retrieved by means of the amplitude comparison between the two filtered grating spectrums, which are mapped into a time-domain waveform. In this way, measurement distortions arising from residual power due to the grating sidelobes are completely avoided, and the wavelength measurement range is considerably extended with respect to the previously proposed schemes. We present the mathematical background for the interrogation of FBGs with an arbitrary bandwidth. In our proof-of-concept experiments, we achieved sensitivities of ∼20 pm with ultra-fast rates up to 264 MHz.

SELECTION OF CITATIONS
SEARCH DETAIL
...