Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39013146

ABSTRACT

Plasmons have facilitated diverse analytical applications due to the boosting signal detectability by hot spots. In practical applications, it is crucial to fabricate straightforward, large-scale, and reproducible plasmonic substrates. Dewetting treatment, via applying direct thermal annealing of metal films, has been used as a straightforward method in the fabrication of such plasmonic nanostructures. However, tailoring the evolution of the dewetting process of metal films poses considerable experimental complexities, mainly due to nanoscale structure formation. Here, we use grazing-incidence small- and wide-angle X-ray scattering for the in situ investigation of the high-power impulse magnetron sputter deposition of Ag on self-assembled Au nanoparticle arrays at low-temperature dewetting conditions. This approach allows us to examine both the direct formation of binary Au/Ag nanostructure and the consequential impact of the dewetting process on the spatial arrangement of the bimetallic nanoparticles. It is observed that the dewetting at 100 °C is sufficient to favor the establishment of a homogenized structural configuration of bimetallic nanostructures, which is beneficial for localized surface plasmon resonances (LSPRs). The fabricated metal nanostructures show potential application for the surface-enhanced Raman scattering (SERS) detection of rhodamine 6G molecules. As SERS platform, bimetallic nanostructures formed with dewetting conditions turn out to be superior to those without dewetting conditions. The method in this work is envisioned as a facile strategy for the fabrication of plasmonic nanostructures.

2.
ACS Appl Mater Interfaces ; 16(26): 33885-33896, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38888910

ABSTRACT

Donor (D)-acceptor (A) copolymer-based organic mixed ionic-electronic conductors (OMIECs) exhibit intrinsic environmental stability for they have tailored energy levels. However, their figure-of-merit (µC*) is still falling behind the D-D polymers because of morphology deterioration during the electrochemical doping process. Herein, we developed two D-A copolymers with precisely regulated backbone curvature, namely PTBT-P and PTTBT-P. Compared to the curved PTBT-P and previously reported copolymers, PTTBT-P better keeps its backbone linear, leading to a long-range ordered doping morphology, which is revealed by the in operando X-ray technique. This optimized doping morphology enables a significantly improved operando charge mobility (µ) of 2.44 cm2 V-1 s-1 and a µC* value of 342 F cm-1 V-1 s-1, one of the highest values in D-A copolymer based on OECTs. Besides, we fabricated PTTBT-P-based electrochemical random-access memories and achieved ideal and robust conductance modulation. This study highlights the critical role of backbone curvature control in the optimization of doping morphology for efficient and robust organic electrochemical devices.

3.
Nanoscale ; 15(38): 15768-15774, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37740389

ABSTRACT

Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS-b-P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS-b-P4VP ordered layers ideal candidates for lithography.

4.
Nanotechnology ; 32(46)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34348241

ABSTRACT

The catalytic conversion of nitrogen to ammonia remains an energy-intensive process, demanding advanced concepts for nitrogen fixation. The major obstacle of nitrogen fixation lies in the intrinsically high bond energy (941 kJ mol-1) of the N≡N molecule and the absence of a permanent dipole in N2. This kinetic barrier is addressed in this study by an efficient piezo-enhanced gold catalysis as demonstrated by the room temperature reduction of dinitrogen into ammonia. Au nanostructures were immobilized on thin film piezoelectric support of potassium sodium niobate (K0.5Na0.5NbO3, KNN) by chemical vapor deposition of a new Au(III) precursor [Me2Au(PyTFP)(H2O)]1(PyTFP = (Z)-3,3,3-trifluoro-1-(pyridin-2-yl)-prop-1-en-2-olate) that exhibited high volatility (60 °C, 10-3mbar) and clean decomposition mechanism to produce well adherent elemental gold films on KNN and Ti substrates. The gold-functionalized KNN films served as an efficient catalytic system for ammonia production with a Faradaic efficiency of 18.9% achieved upon ultrasonic actuation. Our results show that the spontaneous polarization of piezoelectric materials under external electrical fields augments the sluggish electron transfer kinetics by creating instant dipoles in adsorbed N2molecules to deliver a piezo-enhanced catalytic system promising for sustained activation of dinitrogen molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...