Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(10)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37892969

ABSTRACT

Inflammatory activation within the brain is linked to a decrease in cognitive abilities; however, the molecular mechanisms implicated in the development of inflammatory-related cognitive dysfunction and its prevention are poorly understood. This study compared the responses of hippocampal transcriptomes 3 months after the striatal infusion of lipopolysaccharide (LPS; 30 µg), resulting in memory loss, or with dexamethasone (DEX; 5 mg/kg intraperitoneal) pretreatment, which abolished the long-term LPS-induced memory impairment. After LPS treatment, a significant elevation in the expression of immunity/inflammatory-linked genes, including chemokines (Cxcl13), cytokines (Il1b and Tnfsf13b), and major histocompatibility complex (MHC) class II members (Cd74, RT1-Ba, RT1-Bb, RT1-Da, and RT1-Db1) was observed. DEX pretreatment did not change the expression of these genes, but significantly affected the expression of genes encoding ion channels, primarily calcium and potassium channels, regulators of glutamate (Slc1a2, Grm5, Grin2a), and GABA (Gabrr2, Gabrb2) neurotransmission, which enriched in such GO biological processes as "Regulation of transmembrane transport", "Cognition", "Learning", "Neurogenesis", and "Nervous system development". Taken together, these data suggest that (1) pretreatment with DEX did not markedly affect LPS-induced prolonged inflammatory response; (2) DEX pretreatment can affect processes associated with glutamatergic signaling and nervous system development, possibly involved in the recovery of memory impairment induced by LPS.

2.
PLoS One ; 10(12): e0143978, 2015.
Article in English | MEDLINE | ID: mdl-26624017

ABSTRACT

Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.


Subject(s)
Apoptosis/drug effects , Depression/metabolism , Glucocorticoids/pharmacology , Midbrain Raphe Nuclei/metabolism , Stress, Psychological/metabolism , bcl-X Protein/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Dexamethasone/pharmacology , Male , Metyrapone/pharmacology , Midbrain Raphe Nuclei/drug effects , RNA, Messenger/metabolism , Rats , Tryptophan Hydroxylase/metabolism
3.
Psychopharmacology (Berl) ; 232(5): 851-60, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25134502

ABSTRACT

RATIONALE: Glucocorticoids facilitate coping with stress, but their high levels have been also implicated in mood disorders. Due to this duality, the role of glucocorticoid signaling in the development of the first episodes of stress-induced depression remains unclear. OBJECTIVES: To address this issue, effects of the glucocorticoid signal modulation on depressive-like behavior during pretest and test Porsolt swim sessions were examined. METHODS: Metyrapone (MET; 150 mg/kg, i.p.) was injected 3 h before pretest to block stress-induced increase in corticosterone levels. Dexamethasone (DEX; 0.2 mg/kg, s.c.) was applied to MET-treated rats 1 h before both pretest and test sessions. In addition to behavior during these sessions, glucocorticoid receptor (GR) expression was analyzed by immunohistochemistry 2 h after the second swim. RESULTS: In pretest, MET-treated rats exhibited increased latency to immobility and shortened immobility. DEX reversed the behavioral effects of MET in the pretest. In the test, animals from MET + DEX group unexpectedly exhibited an antidepressant-like behavior. Swim stress increased GR expression in the frontal cortex irrespective of the pharmacological treatment. A significant elevation in GR expression was found in the prefrontal cortex (PFC) of stressed MET + DEX-treated rats and in the PFC of unstressed rats 6 h after injection of DEX alone. CONCLUSION: The data suggest that the increase in glucocorticoid levels under swim stress during pretest directly contributes to the development of the immobility response. Transition of DEX effect from prodepressant in the pretest to an antidepressant in the test was associated with the elevation in the PFC GR expression.


Subject(s)
Dexamethasone/pharmacology , Enzyme Inhibitors/pharmacology , Glucocorticoids/pharmacology , Metyrapone/pharmacology , Stress, Physiological/drug effects , Stress, Psychological/metabolism , Animals , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Corticosterone/metabolism , Depression/drug therapy , Depression/metabolism , Male , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Receptors, Glucocorticoid/metabolism , Swimming
4.
Chin J Physiol ; 56(1): 36-43, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23347014

ABSTRACT

Reproductive functions in adult organism are known to be affected by different factors. Effects of social environment at the postnatal ontogenesis attract particular attention since it has deep impact on the development of physiological and emotional state of an individual. Effects of chronic social isolation at different ages on male sexual motivation, testosterone and corticosterone response under conditions of sexual arousal were studied in Wistar rats. After weaning at the 21st [corrected] day of age, rats of one group were isolated for six weeks and after that they were housed in groups of five per cage for ten weeks (Iso3-9). Rats of the second group were housed in groups of five animals per cage till 13 weeks of age, and then they were isolated for six weeks (Iso13-19). Rats of the control group were housed in groups during the experiment. Adult 19 week- old male rats were tested under conditions of sexual arousal. The expression of sexual motivation was estimated as the behavioral activity of a male at the transparent perforated partition separating a receptive female. Isolation of adult male rats reduced the number of approaches to the partition, while the period of time a male spent at the partition was not changed and testosterone response was enhanced as compared to control rats. Chronic social isolation during peri-adolescence reduced sexual motivation and prevented arousal-induced elevation of testosterone. Plasma corticosterone increases at sexual arousal in the two groups of isolated rats did not differ from that in controls. Our results are evidence that social isolation during the post-maturity stage (Iso13-19) did not diminish the manifestation of sexual motivation and hormonal response to a receptive female, while isolation during peri-adolescence attenuated behavioral and hormonal expression of sexual arousal in adult males.


Subject(s)
Corticosterone/blood , Motivation/physiology , Sexual Behavior, Animal , Social Isolation , Testosterone/blood , Animals , Female , Male , Rats
5.
Cell Mol Neurobiol ; 32(5): 767-76, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22278304

ABSTRACT

Clinical observations and the results of animal studies have implicated changes in neuronal survival and plasticity in both the etiology of mood disorders, especially stress-induced depression, and anti-depressant drug action. Stress may predispose individuals toward depression through down-regulation of neurogenesis and an increase in apoptosis in the brain. Substantial individual differences in vulnerability to stress are evident in humans and were found in experimental animals. Recent studies revealed an association between the brain anti-apoptotic protein B cell lymphoma like X, long variant (Bcl-xL) expression and individual differences in behavioral vulnerability to stress. The ability to increase Bcl-xL gene expression in the hippocampus in response to stress may be an important factor for determining the resistance to the development of stress-induced depression. Treatment with anti-depressant drugs may change Bcl-xL response properties. In the rat brainstem, expression of this anti-apoptotic gene becomes sensitive to swim stress during the long-term fluoxetine treatment, an effect that appeared concomitantly with the anti-depressant-like action of the drug in the forced swim test, suggesting that Bcl-xL may be a new target for depression therapy. The processes and pathways linking stress stimuli to behavior via intracellular anti-apoptotic protein are discussed here in the context of Bcl-xL functions in the mechanisms of individual differences in behavioral resilience to stress and anti-depressant-induced effects on the behavioral despair.


Subject(s)
Apoptosis , Behavior , Brain/metabolism , Brain/pathology , Depression/etiology , Resilience, Psychological , Stress, Psychological/complications , bcl-X Protein/metabolism , Animals , Depression/drug therapy , Humans
6.
Behav Brain Res ; 213(2): 218-24, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20457187

ABSTRACT

Stress may predispose individuals toward depression through down-regulation of neurogenesis and increase in apoptosis in the brain. However, many subjects show high resistance to stress in relation to psychopathology. In the present study, we assessed the possibility that individual-specific patterns of gene expression associated with cell survival and proliferation may be among the molecular factors underlying stress resilience. Brain-derived neurotrophic factor (BDNF), anti-apoptotic B cell lymphoma like X (Bcl-xl) and pro-apoptotic bcl2-associated X protein (Bax) expression were determined in the hippocampus and frontal cortex of rats naturally differed in despair-like behavior in the forced swim test. In the hippocampus, BDNF messenger RNA (mRNA) level was significantly down-regulated 2h after the forced swim test exposure, and at this time point, Bcl-xl mRNA and protein levels were significantly higher in stressed than in untested animals. The ratios of hippocampal Bcl-xl to Bax mRNA negatively correlated with the total time spent immobile in the test. When animals were divided in two groups according to immobility responses in two consecutive swim sessions and designated as stress resilient if their immobility time did not increase in the second session as it did in stress sensitive rats, it was found that resilient rats had significantly higher Bcl-xl/Bax ratios in the hippocampus than stress sensitive animals. The data suggest that naturally occurring variations in the Bcl-xl/Bax ratio in the hippocampus may contribute to individual differences in vulnerability to stress-induced depression-like behaviors.


Subject(s)
Depression/metabolism , Gene Expression Regulation/physiology , Hippocampus/metabolism , Stress, Psychological/metabolism , Stress, Psychological/psychology , Swimming/psychology , bcl-X Protein/biosynthesis , Adrenocorticotropic Hormone/blood , Animals , Brain-Derived Neurotrophic Factor/biosynthesis , Corticosterone/blood , Disease Models, Animal , Frontal Lobe/metabolism , Male , Rats , Stress, Psychological/physiopathology , Time Factors , bcl-2-Associated X Protein/biosynthesis
7.
Psychoneuroendocrinology ; 31(2): 179-86, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16112493

ABSTRACT

The effect of a lack of the gene encoding monoamine oxidase A (MAO A) in transgenic Tg 8 mice on the corticosterone response to restraint, cold, water deprivation-induced, or social acute stress as well as chronic variable stress was studied. It was found that Tg 8 mice with genetic MAO A knockout and wild-type C3H/HeJ (C3H) strain showed similar plasma corticosterone resting level. MAO A knockout mice differed from C3H mice by attenuated response to restraint (60 min), cold (4 degrees C, 60 min), and water deprivation (48 h) as well as to a chronic (15 days) variable stress. No difference between Tg 8 and C3H strains in the response to psychosocial stress (encounters for 30 min of six previously isolated mice) has been found. ACTH administration to dexamethasone-pretreated mice produced a similar corticosterone effect in Tg 8 and C3H mice, indicating that the decreased stress response in MAO A-deficient mice was due rather to the central mechanisms regulating stress-induced ACTH release than to adrenocortical responsiveness to ACTH.


Subject(s)
Adrenal Cortex/enzymology , Corticosterone/blood , Monoamine Oxidase/metabolism , Stress, Physiological/enzymology , Stress, Psychological/enzymology , Adrenal Cortex/physiopathology , Adrenocorticotropic Hormone/physiology , Analysis of Variance , Animals , Cryotherapy , Female , Male , Mice , Mice, Inbred C3H , Mice, Knockout , Monoamine Oxidase/genetics , Social Environment , Stress, Physiological/blood , Stress, Physiological/genetics , Stress, Psychological/blood , Stress, Psychological/genetics
8.
Physiol Behav ; 75(1-2): 217-25, 2002.
Article in English | MEDLINE | ID: mdl-11890971

ABSTRACT

The immediate and long-lasting effects of two models of chronic stress during the prepubertal period of life (21-32 days) on the acoustic startle response (ASR) were studied in outbred Wistar normotensives and rats with inherited stress-induced arterial hypertension (ISIAH) derived from them. Chronic variable stress (CVS) and repeated handling were used as chronic treatment. The obtained data showed a significantly attenuated ASR and a greater magnitude of prepulse inhibition (PPI) in juvenile and adult ISIAH compared to Wistar rats. The immediate effects of prolonged stress on the ASR were genotype-dependent. Young ISIAH rats exposed to both types of prepubertal stimulation had higher ASR than the age-matched controls. No significant stress-induced changes in the ASR were found in young Wistar rats. The long-lasting consequences of prolonged prepubertal stress were similar in the two strains and were determined by the specificity of stress stimulation: chronic handling had no effect on the ASR, while CVS enhanced it. The long-lasting effect of CVS experienced in prepubertal life appears to produce ASR changes similar to those seen in patients with posttraumatic stress disorder (PTSD). The magnitude of PPI increased from early age to adulthood and it was tolerant to environmental influences. The two rat strains did not differ in the rate of short-term habituation to repeated acoustic stimuli, which was unaffected by prepubertal stress. Evidence was obtained indicating that genetic and environmental background in childhood may contribute to the truncation of the startle response.


Subject(s)
Reflex, Startle/physiology , Sexual Maturation/physiology , Stress, Psychological/psychology , Aging/psychology , Animals , Chronic Disease , Handling, Psychological , Male , Noise/adverse effects , Pain/psychology , Rats , Rats, Inbred Strains , Rats, Wistar , Restraint, Physical , Species Specificity , Swimming/psychology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...