Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 22(14): 5667-5673, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35848767

ABSTRACT

The optimization of superconducting thin-films has pushed the sensitivity of superconducting nanowire single-photon detectors (SNSPDs) to the mid-infrared (mid-IR). Earlier demonstrations have shown that straight tungsten silicide nanowires can achieve unity internal detection efficiency (IDE) up to λ = 10 µm. For a high system detection efficiency (SDE), the active area needs to be increased, but material nonuniformity and nanofabrication-induced constrictions make mid-IR large-area meanders challenging to yield. In this work, we improve the sensitivity of superconducting materials and optimize a high-resolution nanofabrication process to demonstrate large-area SNSPDs with unity IDE at 7.4 µm. Our approach yields large-area meanders down to 50 nm width, with average line-width roughness below 10%, and with a lower impact from constrictions compared to previous demonstrations. Our methods pave the way to high-efficiency SNSPDs in the mid-IR band with potential impacts on astronomy, imaging, and physical chemistry.


Subject(s)
Nanowires , Electric Conductivity , Equipment Design , Photometry , Photons
2.
Nano Lett ; 20(3): 2163-2168, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32091221

ABSTRACT

While single-pixel superconducting nanowire single photon detectors (SNSPDs) have demonstrated remarkable efficiency and timing performance from the UV to near-IR, scaling these devices to large imaging arrays remains challenging. Here, we propose a new SNSPD multiplexing system using thermal coupling and detection correlations between two photosensitive layers of an array. Using this architecture with the channels of one layer oriented in rows and the second layer in columns, we demonstrate imaging capability in 16-pixel arrays with accurate spot tracking at the few-photon level. We also explore the performance trade-offs of orienting the top layer nanowires parallel and perpendicular to the bottom layer. The thermally coupled row-column scheme is readily able to scale to the kilopixel size with existing readout systems and, when combined with other multiplexing architectures, has the potential to enable megapixel scale SNSPD imaging arrays.

3.
Opt Express ; 20(2): 1503-11, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22274494

ABSTRACT

Microwave Kinetic Inductance Detectors, or MKIDs, have proven to be a powerful cryogenic detector technology due to their sensitivity and the ease with which they can be multiplexed into large arrays. A MKID is an energy sensor based on a photon-variable superconducting inductance in a lithographed microresonator, and is capable of functioning as a photon detector across the electromagnetic spectrum as well as a particle detector. Here we describe the first successful effort to create a photon-counting, energy-resolving ultraviolet, optical, and near infrared MKID focal plane array. These new Optical Lumped Element (OLE) MKID arrays have significant advantages over semiconductor detectors like charge coupled devices (CCDs). They can count individual photons with essentially no false counts and determine the energy and arrival time of every photon with good quantum efficiency. Their physical pixel size and maximum count rate is well matched with large telescopes. These capabilities enable powerful new astrophysical instruments usable from the ground and space. MKIDs could eventually supplant semiconductor detectors for most astronomical instrumentation, and will be useful for other disciplines such as quantum optics and biological imaging.


Subject(s)
Astronomical Phenomena , Infrared Rays , Optics and Photonics/methods , Telescopes , Ultraviolet Rays , Electric Conductivity , Equipment Design , Spectroscopy, Near-Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...