Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Ecology ; : e4405, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39245911

ABSTRACT

Increased temperatures are altering rates of organic matter (OM) breakdown in stream ecosystems with implications for carbon (C) cycling in the face of global change. The metabolic theory of ecology (MTE) provides a framework for predicting temperature effects on OM breakdown, but differences in the temperature dependence of breakdown driven by different organismal groups (i.e., microorganisms vs. invertebrate detritivores) and litter species remain unresolved. Over two years, we conducted 12 60-day leaf litterbag incubations in 20 headwater streams in the southern Appalachian Mountains (USA). We compared temperature dependence (as activation energy, Ea) between microbial and detritivore-mediated breakdown, and between a highly recalcitrant (Rhododendron maximum) and a relatively labile (Acer rubrum) leaf species. Detritivore-mediated breakdown had a higher Ea than microbial breakdown for both leaf species (Rhododendron: 1.48 > 0.56 eV; Acer: 0.97 > 0.29 eV), and Rhododendron breakdown had a higher Ea than Acer breakdown for both organismal groups. Similarly, the Ea of total (coarse-mesh) Rhododendron breakdown was higher than the Ea of total Acer breakdown (0.89 > 0.52 eV). These effects for total breakdown were large, implying that the number of days to 95% mass loss would decline by 40% for Rhododendron and 26% for Acer between 12°C (our mean temperature value) and 16°C (+4°C, reflecting projected increases in global surface temperature due to climate change). Despite patterns in Ea, overall breakdown rates were higher for microbes than detritivores, and for Acer than Rhododendron over most of our temperature gradient. Additionally, the Ea for a subset of the microbial breakdown data declined from 0.40 to 0.22 eV when fungal biomass was included as a model predictor, highlighting the key role of fungi in determining the temperature dependence of litter breakdown. Our results imply that, as streams warm, routing of leaf litter C to detritivore-mediated fates will increase faster than predicted by previous studies and MTE, especially for labile litter. As temperatures rise, earlier depletion of autumn-shed, labile leaf litter combined with rapid breakdown rates of recalcitrant litter could exacerbate seasonal resource limitation and alter carbon storage and transport dynamics in temperate headwater stream networks.

2.
Ecol Evol ; 12(9): e9339, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36188518

ABSTRACT

Time-series data offer wide-ranging opportunities to test hypotheses about the physical and biological factors that influence species abundances. Although sophisticated models have been developed and applied to analyze abundance time series, they require information about species detectability that is often unavailable. We propose that in many cases, simpler models are adequate for testing hypotheses. We consider three relatively simple regression models for time series, using simulated and empirical (fish and mammal) datasets. Model A is a conventional generalized linear model of abundance, model B adds a temporal autoregressive term, and model C uses an estimate of population growth rate as a response variable, with the option of including a term for density dependence. All models can be fit using Bayesian and non-Bayesian methods. Simulation results demonstrated that model C tended to have greater support for long-lived, lower-fecundity organisms (K life-history strategists), while model A, the simplest, tended to be supported for shorter-lived, high-fecundity organisms (r life-history strategists). Analysis of real-world fish and mammal datasets found that models A, B, and C each enjoyed support for at least some species, but sometimes yielded different insights. In particular, model C indicated effects of predictor variables that were not evident in analyses with models A and B. Bayesian and frequentist models yielded similar parameter estimates and performance. We conclude that relatively simple models are useful for testing hypotheses about the factors that influence abundance in time-series data, and can be appropriate choices for datasets that lack the information needed to fit more complicated models. When feasible, we advise fitting datasets with multiple models because they can provide complementary information.

3.
Oecologia ; 193(4): 981-993, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32740731

ABSTRACT

Diverse global change processes are reshaping the biogeochemistry of stream ecosystems. Nutrient enrichment is a common stressor that can modify flows of biologically important elements such as carbon (C), nitrogen (N), and phosphorus (P) through stream foodwebs by altering the stoichiometric composition of stream organisms. However, enrichment effects on concentrations of other important essential and trace elements in stream taxa are less understood. We investigated shifts in macroinvertebrate ionomes in response to changes in coarse benthic organic matter (CBOM) stoichiometry following N and P enrichment of five detritus-based headwater streams. Concentrations of most elements (17/19) differed among three insect genera (Maccaffertium sp., Pycnopsyche spp., and Tallaperla spp.) prior to enrichment. Genus-specific changes in the body content of: P, magnesium, and sodium (Na) in Tallaperla; P, Na, and cadmium in Pycnopsyche; and P in Maccaffertium were also found across CBOM N:P gradients. These elements increased in Tallaperla but decreased in the other two taxa due to growth dilution at larger body sizes. Multivariate elemental differences were found across all taxa, and ionome-wide shifts with dietary N and P enrichment were also observed in Tallaperla and Pycnopsyche. Our results show that macroinvertebrates exhibit distinct differences in elemental composition beyond C, N, and P and that the ionomic composition of common stream taxa can vary with body size and N and P enrichment. Thus, bottom-up changes in N and P supplies could potentially influence the cycling of lesser studied biologically essential elements in aquatic environments by altering their relative proportions in animal tissues.


Subject(s)
Ecosystem , Rivers , Animals , Carbon , Invertebrates , Nitrogen , Phosphorus
4.
Ecol Appl ; 30(6): e02130, 2020 09.
Article in English | MEDLINE | ID: mdl-32227394

ABSTRACT

We used a recently published, open-access data set of U.S. streamwater nitrogen (N) and phosphorus (P) concentrations to test whether watershed land use differentially influences N and P concentrations, including the relative availability of dissolved and particulate nutrient fractions. We tested the hypothesis that N and P concentrations and molar ratios in streams and rivers of the United States reflect differing nutrient inputs from three dominant land-use types (agricultural, urban and forested). We also tested for differences between dissolved inorganic nutrients and suspended particulate nutrient fractions to infer sources and potential processing mechanisms across spatial and temporal scales. Observed total N and P concentrations often exceeded reported thresholds for structural changes to benthic algae (58, 57% of reported values, respectively), macroinvertebrates (39% for TN and TP), and fish (41, 37%, respectively). The majority of dissolved N and P concentrations exceeded threshold concentrations known to stimulate benthic algal growth (85, 87%, respectively), and organic matter breakdown rates (94, 58%, respectively). Concentrations of both N and P, and total and dissolved N:P ratios, were higher in streams and rivers with more agricultural and urban than forested land cover. The pattern of elevated nutrient concentrations with agricultural and urban land use was weaker for particulate fractions. The % N contained in particles decreased slightly with higher agriculture and urbanization, whereas % P in particles was unrelated to land use. Particulate N:P was relatively constant (interquartile range = 2-7) and independent of variation in DIN:DIP (interquartile range = 22-152). Dissolved, but not particulate, N:P ratios were temporally variable. Constant particulate N:P across steep DIN:DIP gradients in both space and time suggests that the stoichiometry of particulates across U.S. watersheds is most likely controlled either by external or by physicochemical instream factors, rather than by biological processing within streams. Our findings suggest that most U.S. streams and rivers have concentrations of N and P exceeding those considered protective of ecological integrity, retain dissolved N less efficiently than P, which is retained proportionally more in particles, and thus transport and export high N:P streamwater to downstream ecosystems on a continental scale.


Subject(s)
Ecosystem , Rivers , Agriculture , Animals , Nitrogen/analysis , Phosphorus/analysis , United States
5.
Science ; 347(6226): 1142-5, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25745171

ABSTRACT

Nutrient pollution of freshwater ecosystems results in predictable increases in carbon (C) sequestration by algae. Tests of nutrient enrichment on the fates of terrestrial organic C, which supports riverine food webs and is a source of CO2, are lacking. Using whole-stream nitrogen (N) and phosphorus (P) additions spanning the equivalent of 27 years, we found that average terrestrial organic C residence time was reduced by ~50% as compared to reference conditions as a result of nutrient pollution. Annual inputs of terrestrial organic C were rapidly depleted via release of detrital food webs from N and P co-limitation. This magnitude of terrestrial C loss can potentially exceed predicted algal C gains with nutrient enrichment across large parts of river networks, diminishing associated ecosystem services.


Subject(s)
Carbon Sequestration , Food Chain , Rivers/chemistry , Water Pollution , Acer , Biomass , Liriodendron , Nitrogen/chemistry , Nutritional Physiological Phenomena , Phosphorus/chemistry , Plant Leaves , Quercus , Rhododendron
6.
Ecology ; 96(11): 2994-3004, 2015 Nov.
Article in English | MEDLINE | ID: mdl-27070018

ABSTRACT

Nutrient-driven perturbations to the resource base of food webs are predicted to attenuate with trophic distance, so it is unclear whether higher-level consumers will generally respond to anthropogenic nutrient loading. Few studies have tested whether nutrient (specifically, nitrogen [N] and phosphorus [P]) enrichment of aquatic ecosystems propagates through multiple trophic levels to affect predators, or whether N vs. P is relatively more important in driving effects on food webs. We conducted two-year whole-stream N and P additions to five streams to generate gradients in N and P concentration and N:P ratio (target N:P = 2, 8, 16, 32, 128). Larval salamanders are vertebrate predators of primary and secondary macroinvertebrate consumers in many heterotrophic headwater streams in which the basal resources are detritus and associated microorganisms. We determined the effects of N and P on the growth rates of caged and free-roaming larval Desmognathus quadramaculatus and the average body size of larval Eurycea wilderae. Growth rates and average body size increased by up to 40% and 60%, respectively, with P concentration and were negatively related to N:P ratio. These findings were consistent across both species of salamanders using different methodologies (cage vs. free-roaming) and at different temporal scales (3 months vs. 2 yr). Nitrogen concentration was not significantly related to increased growth rate or body size of the salamander species tested. Our findings suggest that salamander growth responds to the relaxation of ecosystem-level P limitation and that moderate P enrichment can have relatively large effects on vertebrate predators in detritus-based food webs.


Subject(s)
Phosphorus/chemistry , Rivers/chemistry , Urodela/growth & development , Animals , Body Size , Food Chain , Invertebrates/physiology , Larva/physiology , Nitrogen , Population Dynamics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL